LEARNING IN BIOLOGICAL NEUROPROCESSORS USING A CENTER OF AREA METHOD

José M. Ferrández, Victor Lorente, Félix de la Paz, José Manuel Cuadra, José R. Álvarez-Sánchez, Eduardo Fernández

Abstract

Learning in a biological neuroprocessor is analyzed using human neuroblastoma cultures and a center of area method in order to guide a robot to follow the light or the brightest area in a limited scenario. The main setup consists in an inverted microscope where a multielectrode array is attached with the biological cultures. This elements amplifies and send the weak neural signals to a D/A card where analyzing process is achieved, computing the movement of the robot, that is remotely linked to this computer. The robot also sends the a picture of the scenario to the computer in order to stimulate the culture with a center of area scheme. In this paper, it is shown that learning is possible in this culture, and guiding the robot to a desired goal is a feasible task.

References

  1. Álvarez Sánchez, J. R., de la Paz López, F., Cuadra Troncoso, J. M., and de Santos Sierra, D. (2010). Reactive Navigation in Real Environments Using Partial Center of Area Method. Robotics and Autonomous Systems. In press, http://dx.doi.org/10.1016/j.robot.2010.05.009.
  2. Álvarez Sánchez, J. R., de la Paz López, F., Cuadra Troncoso, J. M., and Rosado Sánchez, J. I. (2009). Partial Center of Area Method Used for Reactive Autonomous Robot Navigation. In Mira, J., Ferrández, J. M., Álvarez, J. R., de la Paz, F., and Toledo, F. J., editors, Bioinspired Applications in Artificial and Natural Computation, volume 5602 of LNCS, pages 408- 418. Springer Verlag.
  3. Antonov, I., Antonova, I., and Kandel, E. (2003). Activitydependent presynaptic facilitation and hebbian LTP are both required and interact during classical conditioning in aplysia. Neuron, 37(1):135-147.
  4. Bading, H. and Greenberg, M. (1991). Stimulation of protein tyrosine phosphorylation by NMDA receptor activation. Science, 253(5022):912-914.
  5. Bakkum, D. J., Chao, Z. C., and Potter, S. M. (2008a). Long-term activity-dependent plasticity of action potential propagation delay and amplitude in cortical networks. PLoS One, 3(5):e2088.
  6. Bakkum, D. J., Chao, Z. C., and Potter, S. M. (2008b). Spatio-temporal electrical stimuli shape behavior of an embodied cortical network in a goal-directed learning task. Journal of Neural Engineering, 5:310-323.
  7. Bakkum, D. J., Gamblen, P. M., Ben-Ary, G., Chao, Z. C., and Potter, S. M. (2007). MEART: the semi-living artist. Frontiers in NeuroRobotics, 1(5):1-10. Online Open-Access paper.
  8. Chao, Z. C., Bakkum, D. J., and Potter, S. M. (2008). Shaping embodied neural networks for adaptive goaldirected behavior. PLoS Computational Biology, 4(3):e1000042. Online Open-Access paper, supplement, and movie.
  9. Esposti, F., Signorini, M. G., Potter, S. M., and Cerutti, S. (2009). Statistical long-term correlations in dissociated cortical neuron recordings. IEEE Transactions on Neural Systems & Rehabilitation Engineering, 17(4):364-9.
  10. Hales, C. M., Rolston, J. D., and Potter, S. M. (2010). How to culture, record and stimulate neuronal networks on micro-electrode arrays (MEAs). JoVE, 39. doi: 10.3791/2056. Online video tutorial: http://www.jove.com/index/Details.stp?ID=2056.
  11. Jimbo, Y., Robinson, H., and Kawana, A. (1998). Strengthening of synchronized activity by tetanic stimulation in cortical cultures: application of planar electrode arrays. IEEE transactions on Biomedical Engineering, 45(11):1297-1304.
  12. Madhavan, R., Chao, Z. C., and Potter, S. M. (2007). Plasticity of recurring spatiotemporal activity patterns in cortical networks. Physical Biology, pages 181-193.
  13. Rolston, J. D., Gross, R. E., and Potter, S. M. (2009). A low-cost multielectrode system for data acquisition and real-time processing with rapid recovery from stimulation artifacts. Frontiers in Neuroengineering, 2(12):1-17. Online Open-Access paper.
  14. Rolston, J. D., Wagenaar, D. A., and Potter, S. M. (2007). Precisely timed spatiotemporal patterns of neural activity in dissociated cortical cultures. Neuroscience, 148:294-303.
  15. Wagenaar, D. A., Pine, J., and Potter, S. M. (2006). An extremely rich repertoire of bursting patterns during the development of cortical cultures. BMC Neuro-science, 7:11.
Download


Paper Citation


in Harvard Style

M. Ferrández J., Lorente V., de la Paz F., Manuel Cuadra J., R. Álvarez-Sánchez J. and Fernández E. (2010). LEARNING IN BIOLOGICAL NEUROPROCESSORS USING A CENTER OF AREA METHOD . In Proceedings of the International Conference on Fuzzy Computation and 2nd International Conference on Neural Computation - Volume 1: ICNC, (IJCCI 2010) ISBN 978-989-8425-32-4, pages 336-343. DOI: 10.5220/0003084003360343


in Bibtex Style

@conference{icnc10,
author={José M. Ferrández and Victor Lorente and Félix de la Paz and José Manuel Cuadra and José R. Álvarez-Sánchez and Eduardo Fernández},
title={LEARNING IN BIOLOGICAL NEUROPROCESSORS USING A CENTER OF AREA METHOD},
booktitle={Proceedings of the International Conference on Fuzzy Computation and 2nd International Conference on Neural Computation - Volume 1: ICNC, (IJCCI 2010)},
year={2010},
pages={336-343},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003084003360343},
isbn={978-989-8425-32-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Fuzzy Computation and 2nd International Conference on Neural Computation - Volume 1: ICNC, (IJCCI 2010)
TI - LEARNING IN BIOLOGICAL NEUROPROCESSORS USING A CENTER OF AREA METHOD
SN - 978-989-8425-32-4
AU - M. Ferrández J.
AU - Lorente V.
AU - de la Paz F.
AU - Manuel Cuadra J.
AU - R. Álvarez-Sánchez J.
AU - Fernández E.
PY - 2010
SP - 336
EP - 343
DO - 10.5220/0003084003360343