AN MOEA-BASED METHOD TO TUNE EA PARAMETERS ON MULTIPLE OBJECTIVE FUNCTIONS

S. K. Smit, A. E. Eiben, Z. Szlávik

Abstract

In this paper, we demonstrate the benefits of using a multi-objective approach when tuning the parameters of an Evolutionary Algorithm. To overcome the specific challenges that arise when using a meta-algorithm for parameter tuning on multiple functions, we introduce a new algorithm called the Multi-Function Evolutionary Tuning Algorithm (M-FETA) that is able to approximate the parameter Pareto front effectively. The results of the experiments illustrate how the approximated Parameter Pareto front can be used to gain insights, identify ‘generalists’, and study the robustness of the algorithm to be tuned.

References

  1. (2005). Proceedings of the 2005 IEEE Congress on Evolutionary Computation, Edinburgh, UK. IEEE Press.
  2. Bartz-Beielstein, T., Lasarczyk, C., and Preuss, M. (2005). Sequential parameter optimization. In (CEC, 2005), pages 773-780 Vol.1.
  3. Bartz-Beielstein, T. and Markon, S. (2004). Tuning search algorithms for real-world applications: A regression tree based approach. Technical Report of the Collaborative Research Centre 531 Computational Intelligence CI-172/04, University of Dortmund.
  4. Bartz-Beielstein, T., Parsopoulos, K., and Vrahatis, M. (2004). Analysis of Particle Swarm Optimization Using Computational Statistics. In Chalkis, editor, Proceedings of the International Conference of Numerical Analysis and Applied Mathematics (ICNAAM 2004), pages 34-37.
  5. Branke, J. (1998). Creating robust solutions by means of evolutionary algorithms. In PPSN V: Proceedings of the 5th International Conference on Parallel Problem Solving from Nature, pages 119-128, London, UK. Springer-Verlag.
  6. Deb, K. (2001). Multi-Objective Optimization using Evolutionary Algorithms. Wiley-Interscience Series in Systems and Optimization. John Wiley & Sons, Chichester.
  7. Deb, K. and Gupta, H. (2005). Searching for robust paretooptimal solutions in multi-objective optimization. In EMO, pages 150-164.
  8. Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm : Nsga-ii. Evolutionary Computation, IEEE Transactions on, 6(2):182-197.
  9. Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm. Royal Statistical Society B, 39:1-38.
  10. Eiben, A. and Jelasity, M. (2002). A Critical Note on Experimental Research Methodology in EC. In Proceedings of the 2002 IEEE Congress on Evolutionary Computation (CEC 2002), pages 582-587. IEEE Press.
  11. Eskandari, H. and Geiger, C. D. (2009). Evolutionary multiobjective optimization in noisy problem environments. Journal of Heuristics, 15(6):559-595.
  12. Hughes, E. (2001). Evolutionary multi-objective ranking with uncertainty and noise. In EMO 7801: Proceedings of the First International Conference on Evolutionary Multi-Criterion Optimization, pages 329-343, London, UK. Springer-Verlag.
  13. Maron, O. and Moore, A. (1997). The racing algorithm: Model selection for lazy learners. In Artificial Intelligence Review, volume 11, pages 193-225.
  14. Nannen, V. and Eiben, A. (2006). A method for parameter calibration and relevance estimation in evolutionary algorithms. In Keijzer, M., editor, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2006), pages 183-190. Morgan Kaufmann, San Francisco.
  15. Smit, S. and Eiben, A. (2009). Comparing parameter tuning methods for evolutionary algorithms. In Proceedings of the 2009 IEEE Congress on Evolutionary Computation, pages 399-406, Trondheim. IEEE Press.
  16. Smit, S. and Eiben, A. (2010). Parameter tuning of evolutionary algorithms: Generalist vs. specialist. In EvoApplications 2010, Part I, pages 542-551. Springer.
  17. University, J. F. and Fieldsend, J. E. (2005). Multi-objective optimisation in the presence of uncertainty. In (CEC, 2005), pages 476-483.
  18. Wolpert, D. H. and Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transaction on Evolutionary Computation, 1(1):67-82.
  19. Yuan, B. and Gallagher, M. (2007). Combining Meta-EAs and Racing for Difficult EA Parameter Tuning Tasks. In Lobo, F., Lima, C., and Michalewicz, Z., editors, Parameter Setting in Evolutionary Algorithms, pages 121-142. Springer.
  20. Zitzler, E., Laumanns, M., and Thiele, L. (2001). Spea2: Improving the strength pareto evolutionary algorithm. Technical Report 103, Gloriastrasse 35, CH-8092 Zurich, Switzerland.
Download


Paper Citation


in Harvard Style

K. Smit S., E. Eiben A. and Szlávik Z. (2010). AN MOEA-BASED METHOD TO TUNE EA PARAMETERS ON MULTIPLE OBJECTIVE FUNCTIONS . In Proceedings of the International Conference on Evolutionary Computation - Volume 1: ICEC, (IJCCI 2010) ISBN 978-989-8425-31-7, pages 261-268. DOI: 10.5220/0003106202610268


in Bibtex Style

@conference{icec10,
author={S. K. Smit and A. E. Eiben and Z. Szlávik},
title={AN MOEA-BASED METHOD TO TUNE EA PARAMETERS ON MULTIPLE OBJECTIVE FUNCTIONS},
booktitle={Proceedings of the International Conference on Evolutionary Computation - Volume 1: ICEC, (IJCCI 2010)},
year={2010},
pages={261-268},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003106202610268},
isbn={978-989-8425-31-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Evolutionary Computation - Volume 1: ICEC, (IJCCI 2010)
TI - AN MOEA-BASED METHOD TO TUNE EA PARAMETERS ON MULTIPLE OBJECTIVE FUNCTIONS
SN - 978-989-8425-31-7
AU - K. Smit S.
AU - E. Eiben A.
AU - Szlávik Z.
PY - 2010
SP - 261
EP - 268
DO - 10.5220/0003106202610268