ON THE DESIGN OF POPULATIONAL CLUSTERING

Leonardo Ramos Emmendorfer

Abstract

The application of clustering algorithms for partitioning the population in evolutionary computation is discussed. Specific aspects which characterize this task lead to opportunities which can be explored by the clustering algorithm. A supervised clustering algorithm is described, which illustrates the exploration of those opportunities.

References

  1. Emmendorfer, L. R. and Pozo, A. T. R. (2009). Effective linkage learning using low-order statistics and clustering. IEEE Transactions on Evolutionary Computation, 13(6):1233-1246.
  2. Etxeberria, R. and Larran˜aga, P. (1999). Global optimization using bayesian networks. In Second Symposium on Artificial Intelligence (CIMAF-99), pages 332-339.
  3. Finley, T. and Joachims, T. (2005). Supervised clustering with support vector machines. In ICML 7805: Proceedings of the twenty-second international conference on Machine Learning, pages 217-224.
  4. Michalski, R. S. (2000). Learnable evolution model: Evolutionary process guided by machine learning. Machine Learning, 38(1):9-40.
  5. Miquélez, T., Bengoetxea, E., and Larran˜aga, P. L. (2004). Evolutionary computation based on Bayesian classifiers. International Journal of Applied Mathematics and Compututer Sciences, 14(3):335-349.
  6. Muhlenbein, H. and Paab , G. (1996). From recombination of genes to the estimation of distributions: I binary parameters. In Parallel Problem Solving from Nature III, pages 178-187.
  7. Oliveira, A. C. M. and Lorena, L. A. N (2004). Detecting promising areas by evolutionary clustering search. In Advances in Artificial Intelligence. Springer Lecture Notes in Artificial Intelligence Series, pages 385-394.
  8. Pen˜a, J., Lozano, J., and Larran˜aga, P. (2005). Globally multimodal problem optimization via an estimation of distribution algorithm based on unsupervised learning of bayesian networks. Evolutionary Compututation, 13(1):43-66.
  9. Romer, R. R., Achan, K., and Frey, B. (2004). Learning to cluster using local neighborhood structure. In ICML 7804: Proceedings of the twenty-first international conference on Machine Learning.
  10. Streichert, F., Ulmer, H., and Zell, A. (2003). A clustering based niching ea for multimodal search spaces. In Proceedings of the 6th International Conference on Artificial Evolution.
  11. Urquhart, R. (1982). Graph theoretical clustering based on limited neghbourhood sets. Pattern Recognition, 15(3):173-187.
Download


Paper Citation


in Harvard Style

Ramos Emmendorfer L. (2010). ON THE DESIGN OF POPULATIONAL CLUSTERING . In Proceedings of the International Conference on Evolutionary Computation - Volume 1: ICEC, (IJCCI 2010) ISBN 978-989-8425-31-7, pages 289-292. DOI: 10.5220/0003114202890292


in Bibtex Style

@conference{icec10,
author={Leonardo Ramos Emmendorfer},
title={ON THE DESIGN OF POPULATIONAL CLUSTERING},
booktitle={Proceedings of the International Conference on Evolutionary Computation - Volume 1: ICEC, (IJCCI 2010)},
year={2010},
pages={289-292},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003114202890292},
isbn={978-989-8425-31-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Evolutionary Computation - Volume 1: ICEC, (IJCCI 2010)
TI - ON THE DESIGN OF POPULATIONAL CLUSTERING
SN - 978-989-8425-31-7
AU - Ramos Emmendorfer L.
PY - 2010
SP - 289
EP - 292
DO - 10.5220/0003114202890292