Archiving pushed Inferences from Sensor Data Streams

Jörg Brunsmann

Abstract

Although pervasively deployed, sensors are currently neither highly interconnected nor very intelligent, since they do not know each other and pro-duce only raw data streams. This lack of interoperability and high-level reasoning capabilities are major obstacles for exploiting the full potential of sensor data streams. Since interoperability and reasoning processes require a common understanding, RDF based linked sensor data is used in the semantic sensor web to articulate the meaning of sensor data. This paper shows how to derive higher levels of streamed sensor data understanding by constructing reasoning know-ledge with SPARQL. In addition, it is demonstrated how to push these inferences to interested clients in different application domains like social media streaming, weather observation and intelligent product lifecycle maintenance. Finally, the paper describes how real-time pushing of inferences enables provenance tracking and how archiving of inferred events could support further decision making processes.

References

  1. Anke, J., Främling, K.: Distributed Decision Support in a PLM scenario. Proceedings of Product Data Technology Europe 14th Symposium (2005)
  2. Barbieri D. F., Valle E.D.: A Proposal for Publishing Data Streams as Linked Data. Linked Data on the Web Workshop (2010)
  3. Barbieri D. F., Braga D., Ceri S., Della Valle E., Grossniklaus M.: Continuous queries and real-time analysis of social semantic data with c-sparql. Proceedings of Social Data on the Web Workshop at the 8th International Semantic Web Conference (2009)
  4. Berners-Lee, T., Connolly D., Kagal L., Hendler J., Scharf Y.: N3Logic: A Logical Framework for the World Wide Web. Journal of Theory and Practice of Logic Programming (TPLP), Special Issue on Logic Programming and the Web (2008)
  5. Bizer C., Heath T. Berners-Lee T.: Linked Data - The Story So Far. International Journal on Semantic Web and Information Systems (2009)
  6. Bry, F., Eckert, M., Patranjan, P.-L., Romanenko, I.: Realizing Business Processes with ECA Rules: Benefits, Challenges, Limits. Proc. Int. Workshop on Principles and Practice of Semantic Web. LNCS, Springer, Heidelberg (2006)
  7. Christin D., Reinhardt A., Mogre P. S., Steinmetz R.: Wireless Sensor Networks and the Internet of Things: Selected Challenges. Proceedings of the 8th GI/ITG KuVS Fachgespräch Drahtlose Sensornetze (2009)
  8. Compton, M., Henson, C., Lefort, L., Neuhaus, H.: A survey of the semantic specification of sensors. Technical report (2009)
  9. Hayes, J., O'Conor, E., Cleary, J., Kolar, H., McCarthy, R., Tynan, R., O'Hare, R., Smeaton, A., O'Connor, N., Diamond, D.: Views From the Coalface: Chemo-Sensors, Sensor Networks and the Semantic Sensor Web. International Workshop on the Semantic Sensor Web (2009)
  10. Hepp, M.: HyperTwitter: Collaborative Knowledge Engineering via Twitter Messages. Technical Report (2010)
  11. Meyer, G.G., Främling, K. & Holmström, J.: Intelligent Products: A survey. Computers in Industry, 60 (2009)
  12. Papamarkos G., Poulovassilis A., Wood P.T.: Event-Condition-Action Rules on RDF Metadata in P2P Environments. In Proc. 2nd Workshop on Metadata Management in Grid and P2P Systems (MMGPS): Models, Services and Architectures, London (2004)
  13. Passant, A., Mendes, P. N.: sparqlPuSH: Proactive notification of data updates in RDF stores using PubSubHubbub. 6th Workshop on Scripting for the Semantic Web (2010)
  14. Ram S. Liu J.: Understanding the Semantics of Data Provenance to Support Active Conceptual Modeling. Proceedings of the Active Conceptual Modeling of Learning Workshop (2006)
  15. Rodriguez, A., McGrath, R., Liu, Y., Myers, J.: Semantic Management of Streaming Data. Proc. Intl. Workshop on Semantic Sensor Networks (2009)
  16. Seitz C., Legat C., Neidig J.: Embedding Semantic Product Memories in the Web of Things. First International Workshop on the Web of Things (2010)
  17. Sheth A., Henson C., Sahoo S. S. Semantic Sensor Web. ARC Research Network on Intelligent Sensors, Sensor Networks and Information Processing - ISSNIP, Melbourne (2008)
  18. Shinavier J.: Real-time #SemanticWeb in <= 140 chars. Proceedings of the Third Workshop on Linked Data on the Web (2010)
  19. Shredded Tweet: http://pegasus.chem.soton.ac.uk/
  20. Stuckenschmidt H., Ceri S., Valle, E.D., van Harmelen F.: Towards Expressive Stream Reasoning. Proceedings of the Dagstuhl Seminar on Semantic Aspects of Sensor Networks (2010)
  21. Twarql - Software implementation realizing the Linked Open Social Signals vision: http://wiki.knoesis.org/index.php/Linked_Open_Social_Signals
  22. Zangiacomi A., Fornasiero R.: Modelling decision support systems for Middle-of-life in product lifecycle management. 14th International Conference on Concurrent Enterprising, Lisbon, Portugal (2008)
Download


Paper Citation


in Harvard Style

Brunsmann J. (2010). Archiving pushed Inferences from Sensor Data Streams . In Proceedings of the International Workshop on Semantic Sensor Web - Volume 1: SSW, (IC3K 2010) ISBN 978-989-8425-33-1, pages 38-46. DOI: 10.5220/0003116000380046


in Bibtex Style

@conference{ssw10,
author={Jörg Brunsmann},
title={Archiving pushed Inferences from Sensor Data Streams},
booktitle={Proceedings of the International Workshop on Semantic Sensor Web - Volume 1: SSW, (IC3K 2010)},
year={2010},
pages={38-46},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003116000380046},
isbn={978-989-8425-33-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Workshop on Semantic Sensor Web - Volume 1: SSW, (IC3K 2010)
TI - Archiving pushed Inferences from Sensor Data Streams
SN - 978-989-8425-33-1
AU - Brunsmann J.
PY - 2010
SP - 38
EP - 46
DO - 10.5220/0003116000380046