A Cognitive Approach to Modelling Semantic Sensor Web Solutions

Agnes Korotij, Judit Kiss-Gulyas

Abstract

Semantic sensor solutions are characterized by a lack of consensus on what features make sensor networks semantic, and what services a semantic layer should provide. Although authors emphasize the fact that humans outperform software in managing inconsistent knowledge and unreliable sensor data, no attempt has been made so far to construct a model of semantic sensor networks inspired by human cognition. The aim of the present paper is to investigate whether the structure and organisation of concepts and meaning in the human mind (as proposed by cognitive linguists and psycholinguists) can serve as a model for constructing ontologies and knowledge representations for the semantic sensor web (hereafter SSW). We also aim to show how multimodal sensory data can be integrated with these representations based on contemporary findings in human perception. We suggest that SSW solutions based on cognitive mechanisms and psychologically plausible knowledge representations overcome the challenges that handling of fuzzy data and inconsistent information generates at present.

References

  1. Brunner, J., Goudou, J., Gatellier, P., Beck, J., Laporte, C. (2009) SEMbySEM: a Framework for Sensors Management. In: SemSensWeb 2009 - 1st International Workshop on the Semantic Sensor Web, 1 June 2009, Crete, Greece.
  2. Calvert, G. (2001). Crossmodal processing in the human brain: insights from functional neuroimaging studies. Cerebral Cortex 11, pp. 1110-1123.
  3. Chomsky, N. (1988) Generative Grammar: Its Basis, Development and Prospects. Studies in English Linguistics and Literature, Special Issue, Kyoto University of Foreign Studies.
  4. Croft, D., Cruse, A. D. (2004) Cognitive Linguistics. Cambridge University Press, New York.
  5. Cruse, A. D. (2000) Meaning in Language. An Introduction to Semantics and Pragmatics. Oxford University Press, New York.
  6. Damasio, H., Grabowsky, T. J., Tranel, D., Hichwa, R. D., and Damasio, A. R. A neural basis for lexical retrieval. Nature 380, pp. 499-505.
  7. Dietze, S., Domingue, J. (2009) Bridging between Sensor Measurements and Symbolic Ontologies through Conceptual Spaces. In: SemSensWeb 2009 - 1st International Workshop on the Semantic Sensor Web, 1 June 2009, Crete, Greece.
  8. Duncan, J. and Humphreys, G. (1989) Visual search and stimulus similarity. Psychological Review 96, pp. 433-458.
  9. Farah, M. J. K., Hammond, D., Levine, R. and Calvanio, R. (1988) Visual and spatial mental imagery: dissociable systems of representation. Cognitive Psychology 20 (1988) pp. 439-462.
  10. Fodor, J. D. and Ferreira, F. (eds.) (1998). Reanalysis in Sentence Processing. Dordrecht: Kluwer Academic Publishers.
  11. Gärdenfors, P. (1994) Three levels of inductive inference. In: Prawitz, D., Skyrms, B. and Westerstahl, D. (eds.): Logic, Methodology, and Philosophy of Science IX (Elsevier Science, Amsterdam, 1994).
  12. Gerardin, E., Sirigu, A., Lehericy, S., Poline, J. B., Gaymard, B., Marsault, C., Agid, Y., and Le Bihan, D. (2000) Partially overlapping neural networks for real and imagined hand movements. Cerebral Cortex 10, pp. 1093-1104.
  13. Gómez, R. (2007) Statistical learning in infant language development. In Gaskell, M.G. (ed.), The Oxford Handbook of Psycholinguistics, pp. 601-616. Oxford University Press, New York.
  14. Harnad, S. (1990) The Symbol Grounding Problem. Physica D 42, pp. 335-346.
  15. Hayes, J. et al. (2009) Views from the coalface: chemo-sensors, sensor networks and the semantic sensor web. In: SemSensWeb 2009 - 1st International Workshop on the Semantic Sensor Web, 1 June 2009, Crete, Greece.
  16. Jiang, J. et al. (2010) Collaborative Localization in Wireless Sensor Networks via Pattern Recognition in Radio Irregularity Using Omnidirectional Antennas. Sensors 2010, 10(1), pp. 400-427.
  17. Lakoff, G. (1992) The contemporary theory of metaphor. In Andrew Ortony (ed.), Metaphor and Thought (2nd edn.), pp. 202-51. Cambridge University Press, Cambridge.
  18. Lewis, M., Cameron, D., Xie, S., Arpinar, I. B. (2006) ES3N: A Semantic Approach to Data Management in Sensor Networks. Semantic Sensor Networks Workshop of the 5th International Semantic Web Conference. 5-9 November, Athens, Georgia, USA.
  19. Marr, D. (1982) Vision. Freeman, New York, 1982.
  20. OGC (2007). Open Geospatial Consortium. Available from: http://www.opengeospatial.org/
  21. Paivio, A. (1990) Mental Representations: A Dual Coding Approach. Oxford University Press, 1990.
  22. Pulvermüller, F. (2007). Brain processes of word recognition as revealed by neurophysiological imaging. The Oxford Handbook of Psycholinguistics, pp. 119-140. Oxford University Press, New York.
  23. Rosch, E., Lloyd, B.B. (eds) (1978) Cognition and Categorization. Lawrence Erlbaum Associates, Publishers, (Hillsdale), 1978.
  24. Seth, A., Hanson, C., Sahoo, S. S. (2008) Semantic Sensor Web. IEEE Internet Computing, 2008 July/August, pp. 78-83.
  25. Seth, A. (2009) Citizen Sensing, Social Signals, and Enriching Human Experience. IEEE Internet Computing, 2009 July/August, pp. 80-85.
  26. Seth, A. (2010) Computing for Human Experience. Semantics-Empowered Sensors, Services, and Social Computing on the Ubiquitous Web. IEEE Internet Computing, 2010 January/February, pp. 88-91.
  27. Ullman, M. T. (2007) The biocognition of the mental lexicon. In Gaskell, M.G. (ed.), The Oxford Handbook of Psycholinguistics, pp. 267-287. Oxford University Press, New York.
  28. Verhagen, J. V., Engelen, L. (2006) The neurocognitive bases of human multimodal food perception: Sensory integration. Neuroscience and Biobehavioral Reviews 30, pp. 613-650
  29. Wang, J. et al. (2010) Neural representation of abstract and concrete concepts: A metaanalysis of neuroimaging studies. Human Brain Mapping.
  30. Weinert, R. (1995) The Role of Formulaic Language in Second Language Acquisition: A Review. Applied Llinguistics 16(2):180-205.
Download


Paper Citation


in Harvard Style

Korotij A. and Kiss-Gulyas J. (2010). A Cognitive Approach to Modelling Semantic Sensor Web Solutions . In Proceedings of the International Workshop on Semantic Sensor Web - Volume 1: SSW, (IC3K 2010) ISBN 978-989-8425-33-1, pages 85-94. DOI: 10.5220/0003118500850094


in Bibtex Style

@conference{ssw10,
author={Agnes Korotij and Judit Kiss-Gulyas},
title={A Cognitive Approach to Modelling Semantic Sensor Web Solutions},
booktitle={Proceedings of the International Workshop on Semantic Sensor Web - Volume 1: SSW, (IC3K 2010)},
year={2010},
pages={85-94},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003118500850094},
isbn={978-989-8425-33-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Workshop on Semantic Sensor Web - Volume 1: SSW, (IC3K 2010)
TI - A Cognitive Approach to Modelling Semantic Sensor Web Solutions
SN - 978-989-8425-33-1
AU - Korotij A.
AU - Kiss-Gulyas J.
PY - 2010
SP - 85
EP - 94
DO - 10.5220/0003118500850094