ATTRIBUTE SELECTION BY MULTIOBJECTIVE EVOLUTIONARY COMPUTATION APPLIED TO MORTALITY FROM INFECTION IN SEVERE BURNS PATIENTS

A. Jara, R. Martínez, D. Vigueras, G. Sánchez, F. Jiménez

Abstract

The problem of selecting variables in data-mining can be modelled as an optimisation problem involving multiple objectives which must be simultaneously optimised. This contribution proposes a multiple objective optimisation model for the problem of selecting variables applicable to the classification of mortality in patients from a hospital burns unit. The evolutionary multiobjective algorithm NSGA-II was adapted to resolve the proposed multiobjective optimisation model proposed and the results obtained were compared with those obtained with a battery of algorithms intended for selecting variables included in the Weka data-mining platform. The comparison underlines the efficacy and suitability of the proposed model and of the use of multiobjective evolutionary computation in this type of problem.

References

  1. Aguilera, J., Chica, M., del Jesus, M., and Herrera, F. (2007). Un estudio sobre el uso de algoritmos genéticos multimodales para selección de características. In Congreso Espan˜ol sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados (MAEB07), pages 485-492.
  2. Coello, C., Veldhuizen, D., and Lamont, G. (2002). Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic/Plenum publishers.
  3. Curreri, P. W., Luterman, Braun, A. J., and Shires, G. T. (1980). Burn injury. analysis of survival and hospitalization time for 937 patients. Ann Surg, 192(4):472- 478.
  4. Deb, K. (2001). Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons.
  5. Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast elitist multiobjective genetic algorithm: Nsgaii. IEEE Transactions on Evolutionary Computation, 6(2):182-197.
  6. Goldberg, D. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley.
  7. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. (2009). The weka data mining software: An update. SIGKDD Explorations, 11.
  8. Jiménez, F., Sánchez, G., Juárez, J., Alcaraz, J., and Sánchez, J. (2009). Fuzzy classification of mortality by infection of severe burnt patients using multiobjective evolutionary algorithms. In Proceedings IWINAC in Lecture Notes Series, pages 447-456.
  9. Kotsiantis, S. (2007). Supervised machine learning: A review of classification techniques. Informática, 31:249-268.
  10. Kumar, K., Sharath, S., D'Souza, G., and Sekaran, K. (2007). Memetic nsga. a multi-objective genetic algorithm for classification of microarray data. In Proceedings of the 15th international Conference on Advanced Computing and Communications ADCOM. IEEE Computer Society, pages 75-80.
  11. Pappa, G., Freitas, A., and Kaestner, C. (2002). A multiobjective genetic algorithm for attribute selection. In Proceedings of Fourth International Conference on Recent Advances in Soft Computing (RASC), pages 116-121.
  12. Society, S. (2007). Intensive-critical medicine and coronary units and spanish society of emergency.generalized infection mortality could be 20 percentage off (in spanish).
Download


Paper Citation


in Harvard Style

Jara A., Martínez R., Vigueras D., Sánchez G. and Jiménez F. (2011). ATTRIBUTE SELECTION BY MULTIOBJECTIVE EVOLUTIONARY COMPUTATION APPLIED TO MORTALITY FROM INFECTION IN SEVERE BURNS PATIENTS . In Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2011) ISBN 978-989-8425-34-8, pages 467-471. DOI: 10.5220/0003126904670471


in Bibtex Style

@conference{healthinf11,
author={A. Jara and R. Martínez and D. Vigueras and G. Sánchez and F. Jiménez},
title={ATTRIBUTE SELECTION BY MULTIOBJECTIVE EVOLUTIONARY COMPUTATION APPLIED TO MORTALITY FROM INFECTION IN SEVERE BURNS PATIENTS },
booktitle={Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2011)},
year={2011},
pages={467-471},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003126904670471},
isbn={978-989-8425-34-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2011)
TI - ATTRIBUTE SELECTION BY MULTIOBJECTIVE EVOLUTIONARY COMPUTATION APPLIED TO MORTALITY FROM INFECTION IN SEVERE BURNS PATIENTS
SN - 978-989-8425-34-8
AU - Jara A.
AU - Martínez R.
AU - Vigueras D.
AU - Sánchez G.
AU - Jiménez F.
PY - 2011
SP - 467
EP - 471
DO - 10.5220/0003126904670471