DESIGN OF A PRESSURE SENSOR FOR MONITORING OF POST-ENDOVASCULAR ANEURYSM REPAIR

A. T. Sepúlveda, A. J. Pontes, J. C. Viana, L. A. Rocha, Isa C. T. Santos, F. Fachin, R. Guzmán de Villoria, B. L. Wardle

Abstract

This paper introduces the design and fabrication process of a flexible pressure sensor for monitoring post-endovascular aneurysm repairs (EVAR). Biocompatible flexible PDMS membranes with embedded aligned carbon nanotubes (CNTs) with a conductivity of 11 S.m-1 and elastic modulus of 2 MPa are used to build a LC network for passive telemetry readout-out. The pressure sensor has a modelled sensitivity 14fF/mmHg for a pressure range between 6-47 mmHg, in agreement with the required application. The pressure sensor, with a 250 µm thickness and total area of 1 cm2, will be contained within the stent-graft and used to measure the pressure inside the aneurysm sac to detect complications related to the EVAR procedure.

References

  1. Ajayan, P. M., Schadler, L. S., Giannaris, C. and Rubio, A. (2000), Single-Walled Carbon Nanotube-Polymer Composites: Strength and Weakness. Advanced Materials, 12, 750-753.
  2. Bello, D., Hart, A. J., Ahn, K., Hallock, M., Yamamoto, N., Garcia, E. J., Ellenbecker, M. J., Wardle, B. L. (2008). Particle exposure levels during CVD growth and subsequent handling of vertically-aligned carbon nanotube films. Carbon, 46, 974-977.
  3. Cebeci, H., Guzmán de Villoria, R., Hart, A. J., and B. L. Wardle (2009). Multifunctional Properties of High Volume Fraction Aligned Carbon Nanotube Polymer Composites with Controlled Morphology. Composites Science and Technology, 69, 2649-2656.
  4. Chau, H.-L. and Wise, K. D. (1987). Scaling limits in batch-fabricated silicon pressure sensors. IEEE Trans. Electron Devices ED, 24, 850-858.
  5. Chuter, T., Parodi, J. C. and Lawrence-Brown, M. (2004). Management of abdominal aortic aneurysm: a decade of progress. Journal of Endovascular Therapy, 11(Suppl II), S82-S95.
  6. Eddings, M. A., Johnson, M. A., Gale, B. K. (2008). Determining the optimal PDMS-PDMS bonding technique for microfluidic devices. J. Micromech. Microeng. 18, 067001.
  7. Greenhalgh, R. M. (2005). Endovascular aneurysm repair versus open repair in patients with abdominal aortic aneurysm (EVAR trial 1): randomised controlled trial. Lancet, 365(9478), 2179-2186.
  8. Hart, J., Slocum, A. H. (2006). Rapid growth and flowmediated nucleation of millimeter-scale aligned carbon nanotube structures from a thin-film cata-lyst. Journal of Physical Chemistry B, 110, 8250-8257.
  9. Hayter C. L., Bradshaw S. R., Allen R. J., Guduguntla M. and Hardman D. T. (2005). Follow-up costs increase the cost disparity between endovascular and open abdominal aortic aneurysm repair. Journal of Vascular Surgery, 42(5), 912-918.
  10. Katzen, B. T. and MacLean, A. A. (2006). Complications of endovascular repair of abdominal aortic aneurysms: A review. CardioVascular and Interventional Radiology, 29(6), 935-946.
  11. Li, Z. and Kleinstreuer, C. (2006). Analysis of biomechanical factors affecting stent-graft migration in an abdominal aortic aneurysm model. J. of Biomechanics, 39 (12), 2264-73.
  12. Michaels, J. A., Drury, D. and Thomas, S. M. (2005). Cost-effectiveness of endovascular abdominal aortic aneurysm repair. British Journal of Surgery, 92, 960- 967.
  13. Milner, R., Kasirajan, K. and Chaikof, E. L. (2006). Future of endograft surveillance. Seminars in Vascular Surgery, 19(2), 75-82.
  14. Mokwa, W. (2007). Medical implants based on Microsystems. Meas. Sci. Technol., 18, R47-R57.
  15. Myers, K., Devine, T., Barras, C., Self, G. (2001). Endoluminal Versus Open repair for abdominal aortic aneurysms. 2nd Virtual Congress of Cardiology.
  16. Parodi, J. C., Palmaz, J. C. and Barone, H. D. (1991). Transfemoral intraluminal graft implantation for abdominal aortic aneurysms. Annals of Vascular Surgery, 5(6), 491-499.
  17. Potkay, J. A. (2008). Long term, implantable blood pressure monitoring systems. Biomed Microdevices, 10, 379-392.
  18. Receveur, R. A. M., Lindemans, F. W. and de Rooij, N .F. (2007). Microsystems technologies for implantable applications. J. Micromech. Microeng., 17, R50-R80.
  19. Rutherford, R. B. and Krupski, W. C. (2004). Current status of open versus endovascular stent-graft repair of abdominal aortic aneurysm. Journal of Vascular Surgery, 39(5), 1129-1139.
  20. Springer, F., Günther, R. W. and Schmitz-Rode, T. (2007). Aneurysm sac pressure measurement with minimally invasive implantable pressure sensors: An alternative to current surveillance regimes after EVAR?. CardioVascular and Interventional Radiology, 31(3), 460-467.
Download


Paper Citation


in Harvard Style

T. Sepúlveda A., J. Pontes A., C. Viana J., A. Rocha L., C. T. Santos I., Fachin F., Guzmán de Villoria R. and L. Wardle B. (2011). DESIGN OF A PRESSURE SENSOR FOR MONITORING OF POST-ENDOVASCULAR ANEURYSM REPAIR . In Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2011) ISBN 978-989-8425-37-9, pages 14-22. DOI: 10.5220/0003127400140022


in Bibtex Style

@conference{biodevices11,
author={A. T. Sepúlveda and A. J. Pontes and J. C. Viana and L. A. Rocha and Isa C. T. Santos and F. Fachin and R. Guzmán de Villoria and B. L. Wardle},
title={DESIGN OF A PRESSURE SENSOR FOR MONITORING OF POST-ENDOVASCULAR ANEURYSM REPAIR},
booktitle={Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2011)},
year={2011},
pages={14-22},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003127400140022},
isbn={978-989-8425-37-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2011)
TI - DESIGN OF A PRESSURE SENSOR FOR MONITORING OF POST-ENDOVASCULAR ANEURYSM REPAIR
SN - 978-989-8425-37-9
AU - T. Sepúlveda A.
AU - J. Pontes A.
AU - C. Viana J.
AU - A. Rocha L.
AU - C. T. Santos I.
AU - Fachin F.
AU - Guzmán de Villoria R.
AU - L. Wardle B.
PY - 2011
SP - 14
EP - 22
DO - 10.5220/0003127400140022