AN INTEGRATED MULTI-CHANNEL SYSTEM FOR BIOMEDICAL SIGNAL ACQUISITION

Jakob M. Tomasik, Wjatscheslaw Galjan, Kristian M. Hafkemeyer, Dietmar Schroeder, Wolfgang H. Krautschneider

Abstract

A CMOS configurable system-on-chip (SoC) for biomedical signal acquisition is described. The SoC is composed of 10 channels, each channel including a programmable analog front-end (AFE) and a 20 bit analog-to-digital converter (ADC). The digitized signals are read out via a high-speed serial communication bus. The AFE includes a common-mode rejection ratio (CMRR) calibration circuitry resulting in a CMRR of more than 80 dB and an active DC-suppression circuitry giving the DC-coupled instrumentation amplifier the possibility to tolerate DC-offsets of up to ±1 V for a power supply voltage of 3.3 V. In low-noise mode the AFE achieves an input referred noise of less than 50 nVrms for EEG application (0.5-70 Hz) and the power consumption of a channel including AFE and ADC is less than 5 mW in low-power mode. A prototype has been fabricated in a 0.35 µm CMOS process.

References

  1. Martins, R., Selberherr, S., and Vaz, F. A., (1998). A CMOS IC for portable EEG acquisition systems. IEEE Trans. Instrum. Meas., 47(5), 1191-1196.
  2. Ng, K. A., and Chan, P. K., (2005). A CMOS analog front-end IC for portable EEG/ECG monitoring. IEEE Trans. Circuits Syst. I, Reg. Papers, 52(11), 2335- 2346.
  3. Yazicioglu, R. F., Merken, P., Puers, R., and Van Hoof, C., (2007). 60 µW 60 nV/vHz readout front-end for portable biopotential acquisition systems. IEEE J. Solid-State Circuits, 42(5), 1100-1110.
  4. Desel, T., Reichel, T., Rudischhauser, S., and Hauer, H., (1996). A CMOS nine channel ECG measurement IC. 2nd International Conference ASIC.
  5. Fuchs, B., Vogel, S., and Schroeder, D. (2002). Universal application-specific integrated circuit for bioelectric data acquisition. Medical Engineering and Physics 24, 695-701.
  6. Martin, T., Jovanov, E., and Raskovic, D., (2000). Issues in wearable computing for medical monitoring applications: a case study of a wearable ECG monitoring device. The Fourth International Symposium on Wearable Computers, 43-49.
  7. Galjan, W., Naydenova, D., Tomasik, J. M., Schroeder, D., and Krautschneider, W. H., (2008). A portable SoC-based ECG-system for 24h x 7d operating time. In Proceedings of IEEE Biocas 2008, Baltimore, USA, 85-88.
  8. Scheer, H. J., Sander, and T., Trahms, L., (2006). The influence of amplifier, interface and biological noise on signal quality in high-resolution EEG recordings. Physiol. Meas., 27, 109-117.
  9. Bronzino, J. D., (2000). The biomedical engineering handbook. 2nd ed. CRC Press.
  10. Webster, J. G., (1998). Medical instrumentation: application and design. 3rd ed. Wiley & Sons, New York.
  11. Van Helleputte, N., Tomasik, J. M., Galjan, W., MoraSanchez, A., Schroeder, D., Krautschneider, W. H., and Puers, R., (2008). A flexible system-on-chip (SoC) for biomedical signal acquisition and processing. Sens. Actuators A: Phys., vol. 142, Issue 1, 361-368.
  12. Winter, B. B., and Webster, J. G., (1983). Driven-right-leg circuit design. IEEE Trans. Biomed. Eng., 30, pp. 62- 66.
  13. Bronskowski, C. and Schroeder, D. (2006). An ultra lownoise operational amplifier with programmable noisepower trade-off. In Proceedings 32nd ESSCIRC 2006, Montreux, Switzerland, 368-371.
  14. Allen, P. E, and Holberg, D. R., (2002). CMOS Analog Circuit Design. Oxford University Press.
  15. Maxim Integrated Products, (2000). Choosing the optimum buffer / ADC combination for your application. Application Note 1094.
  16. Medeiro, F., Pérez-Verdú, B., de la Rosa, J. M., and Rodríguez-Vázquez, Á., (1997). Using CAD Tools for Shortening the Design Cycle of High-Performance SDM: A 16.4bit 9.6 kHz 1.71mW SDM in CMOS 0.7µm Technology. International Journal of Circuit Theory and Applications, 25, 319-334.
  17. Fuchs, B. (2004). Integrierte Sensorschaltungen zur EKGund EEG-Ableitung mit prädiktiver Signalverarbeitung. PhD thesis, Institute of Nanoelectronics, Hamburg University of Technology, Shaker Verlag, Aachen.
  18. Dijkstra, E., Nys, O., Piguet, C., and Degrauwe, M., (1988). On the use of modulo arithmetic comb filters in sigma delta modulators. In IEEE Proc. ICASSP88, 2001-2004.
  19. Lu, A., and Roberts, G., (1994). A high-quality analog oscillator using oversampling D/A conversion techniques. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 41 (7), 437-444.
Download


Paper Citation


in Harvard Style

Tomasik J., Galjan W., Hafkemeyer K., Schroeder D. and Krautschneider W. (2011). AN INTEGRATED MULTI-CHANNEL SYSTEM FOR BIOMEDICAL SIGNAL ACQUISITION . In Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2011) ISBN 978-989-8425-37-9, pages 36-45. DOI: 10.5220/0003137600360045


in Bibtex Style

@conference{biodevices11,
author={Jakob M. Tomasik and Wjatscheslaw Galjan and Kristian M. Hafkemeyer and Dietmar Schroeder and Wolfgang H. Krautschneider},
title={AN INTEGRATED MULTI-CHANNEL SYSTEM FOR BIOMEDICAL SIGNAL ACQUISITION},
booktitle={Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2011)},
year={2011},
pages={36-45},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003137600360045},
isbn={978-989-8425-37-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2011)
TI - AN INTEGRATED MULTI-CHANNEL SYSTEM FOR BIOMEDICAL SIGNAL ACQUISITION
SN - 978-989-8425-37-9
AU - Tomasik J.
AU - Galjan W.
AU - Hafkemeyer K.
AU - Schroeder D.
AU - Krautschneider W.
PY - 2011
SP - 36
EP - 45
DO - 10.5220/0003137600360045