CLASSIFICATION OF HUMAN PHYSICAL ACTIVITIES FROM ON-BODY ACCELEROMETERS - A Markov Modeling Approach

Andrea Mannini, Angelo Maria Sabatini

Abstract

Several applications demanding the development of small networks of on-body sensors, such as motion sensors, are currently investigated. Accelerometers are a popular choice as motion sensors: the reason is partly in their capability of extracting information that can be used to automatically infer the physical activity the human subject is involved, beside their role in feeding estimators of biomechanical parameters. Automatic classification of human physical activities is highly attractive for pervasive computing systems, whereas contextual awareness may ease the human-machine interaction, and in biomedicine, whereas wearable sensor systems are proposed for long-term monitoring of physiological and biomechanical parameters. This paper is concerned with the machine learning algorithms needed to perform the classification task. Hidden Markov Model (HMM) classifiers are studied by contrasting them with Gaussian Mixture Model (GMM) classifiers. HMMs incorporate the statistical information available on movement dynamics into the classification process, without discarding the time history of previous outcomes, as GMMs do. In this work, rather than considering them as models for single motor activities, we apply HMMs as models suitable for sequences of chained activities. An example of the benefits of the statistical leverage by HMMs is illustrated and discussed by analyzing a dataset of accelerometer time series.

References

  1. Allen, F. R., Ambikairajah, E., Lovell, N. H. & Celler, B. G., 2006. Classification of a known sequence of motions and postures from accelerometry data using adapted gaussian mixture models. Physiol. Meas., 27, 935-951.
  2. Babu, R. V., Anantharaman, B., Ramakrishnan, K. & Srinivasan, S., 2002. Compressed domain action classification using hmm. Pattern Recognit. Lett., 23(10), 1203 - 1213.
  3. Bao, L. & Intille, S. S., 2004. Activity recognition from user-annotated acceleration data. In Ferscha, A. & Mattern, F. Pervasive Computing, Springer, 301,1-17.
  4. Bouten, C., Koekkoek, K., Verduin, M., Kodde, R. & Janssen, J., 1997. A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity. IEEE Trans. Biomed. Eng., 44(3):136-147.
  5. Brézillon, P., 1999. Context in problem solving: a survey. Knowl. Eng. Rev., 14(1), 47-80.
  6. Chuy, O., Hirata, Y., Wang, Z. D. & Kosuge, K., 2007. A control approach based on passive behavior to enhance user interaction. IEEE Trans. Rob., 23(5), 899-908.
  7. Foerster, F., Smeja, M. & Fahrenberg, J., 1999. Detection of posture and motion by accelerometry: a validation study in ambulatory monitoring. Comput. Hum. Behav., 15, 571 -583.
  8. Hirata, Y., Komatsuda, S. & Kosuge, K., 2008. Fall prevention control of passive intelligent walker based on human model. IEEE Int.Conf. on Intell. Robots Syst, 1222-1228.
  9. Jain, A. K., Duin, R. P. W. & Mao, J., 2000. Statistical pattern recognition: A review. IEEE Trans. Pattern Anal. Mach. Intell., 22(1), 4-37.
  10. Karantonis, D., Narayanan, M., Mathie, M., Lovell, N., & Celler, B., 2006. Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Trans. Informat. Technol. Biomed., 10(1), 156-167.
  11. Liang, R. & Ouhyoung, M., 1995. A real-time continuous alphabetic sign language to speech conversion VR system. Comput. Graph. Forum, 14(3), 67-76.
  12. Mannini, A. & Sabatini, A. M., 2010. Machine learning methods for classifying human physical activity from on-body accelerometers. Sensors, 10(2), 1154-1175.
  13. Martinez-Contreras, F., Orrite-Urunuela, C., HerreroJaraba, E., Ragheb, H. & Velastin, S. A., 2009. Recognizing human actions using silhouette-based hmm. IEEE Conf. on Adv. Video Signal Based Surv.,43-48.
  14. Mathie, M. J., Celler, B. G., Lovell, N. H. & Coster, A. C., 2004. Classification of basic daily movements using a triaxial accelerometer. Med. Biol. Eng. Comput., 42,679 - 687.
  15. Meijer, G., Westerterp, K., Verhoeven, F., Koper, H. & Ten Hoor, F., 1991. Methods to assess physical activity with special reference to motion sensors and accelerometers. IEEE Trans. Biomed. Eng., 38(3), 221-229.
  16. Pudil, P., Novovicová, J. & Kittler, J., 1994. Floating search methods in feature selection. Pattern Recogn. Lett., 15(11), 1119-1125.
  17. Rabiner, L. R., 1989. A tutorial on hidden markov models and selected applications in speech recognition. Proc. IEEE, 77(2), 257-286.
  18. Ravi, N., Dandekar, N., Mysore, P. & Littman, M. L., 2005. Activity recognition from accelerometer data. American Association for Artificial Intelligence, 5, 1541-1546.
  19. Sabatini, A., Genovese, V. & Pacchierotti, E., 2002. A mobility aid for the support to walking and object transportation of people with motor impairments. IEEE Int.Conf. on Intell. Robots Syst, 2, 1349-1354.
  20. Sabatini A. M., 2006, Inertial sensing in biomechanics: a survey of computational techniques bridging motion analysis and personal navigation.In Begg, R. & Palaniswami, M., Computational Intelligence for Movement Sciences: Neural Networks and Other Emerging Techniques;Eds.; Idea Group Pubilishing: Hershey, PA, USA, 70-100.
  21. Van Laerhoven, K. & Cakmakci, O., 2000. What shall we teach our pants? Proc. IEEE Int. Symposium on Wearable Computers, 77.
  22. Yamato J., Ohya J. & Ishii K., 1992, Recognizing human action in time-sequential images using Hidden Markov Models, Proc. Conf. Comp. Vision and Pattern Rec., 379-385.
  23. Yang, J., Xu, Y. & Chen, C., 1997. Human action learning via hidden markov model. IEEE Trans. Syst. Man and Cyb., Part A, 27(1), 34-44.
  24. Yu, H., Spenko, M. & Dubowsky, S., 2003. An adaptive shared control system for an intelligent mobility aid for the elderly. Auton. Rob., 15(1), 53-66.
Download


Paper Citation


in Harvard Style

Mannini A. and Sabatini A. (2011). CLASSIFICATION OF HUMAN PHYSICAL ACTIVITIES FROM ON-BODY ACCELEROMETERS - A Markov Modeling Approach . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2011) ISBN 978-989-8425-35-5, pages 201-208. DOI: 10.5220/0003151102010208


in Bibtex Style

@conference{biosignals11,
author={Andrea Mannini and Angelo Maria Sabatini},
title={CLASSIFICATION OF HUMAN PHYSICAL ACTIVITIES FROM ON-BODY ACCELEROMETERS - A Markov Modeling Approach},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2011)},
year={2011},
pages={201-208},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003151102010208},
isbn={978-989-8425-35-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2011)
TI - CLASSIFICATION OF HUMAN PHYSICAL ACTIVITIES FROM ON-BODY ACCELEROMETERS - A Markov Modeling Approach
SN - 978-989-8425-35-5
AU - Mannini A.
AU - Sabatini A.
PY - 2011
SP - 201
EP - 208
DO - 10.5220/0003151102010208