MINING QUANTITATIVE ASSOCIATION RULES IN MICROARRAY DATA USING EVOLUTIVE ALGORITHMS

Maria Martinez Ballesteros, Cristina Rubio Escudero, J. C. Riquelme, F. Martíınez-Álvarez

Abstract

The microarray technique is able to monitor the change in concentration of RNA in thousands of genes simultaneously. The interest in this technique has grown exponentially in recent years and the difficulties in analyzing data from such experiments, which are characterized by the high number of genes to be analyzed in relation to the low number of experiments or samples available. In this paper we show the result of applying a data mining method based on quantitative association rules for microarray data. These rules work with intervals on the attributes, without discretizing the data before. The rules are generated by an evolutionary algorithm.

References

  1. Calvano, S. E., Xiao, W., Richards, D. R., Felciano, R. M., Baker, H. V., Cho, R. J., Chen, R. O., Brownstein, B. H., Cobb, J. P., Tschoeke, S. K., Miller-Graziano, C., Moldawer, L. L., Mindrinos, M. N., Davis, R. W., Tompkins, R. G., Lowry, S. F., and Large Scale Collab Res Program, I. A. (2005). A network-based analysis of systemic inflammation in humans. Nature, 437.
  2. Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. (1998). Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press.
  3. McIntosh, T. and Chawla, S. (2007). High-confidence rule mining for microarray analysis. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 4(4):611-623.
  4. Romero-Zliz, R., del Val, C., Cobb, J., and Zwir, I. (2008). Onto-cc: a web server for identifying gene ontology conceptual clusters. Nucleic Acids Res, 36(4):W352- W357.
  5. Rubio-Escudero, C. (2007). Fusion of Knowledge towards Identification of Genetic Profiles in the Systemic Inflammation Problem. Ph.D Thesis. Unversidad de Granada.
  6. Vannucci, M. and Colla, V. (2004). Meaningful discretization of continuous features for association rules mining by means of a som. In Proceedings of the European Symposium on Artificial Neural Networks, pages 489-494.
  7. Venturini, G. (1993). SIA: a Supervised Inductive Algorithm with genetic search for learning attribute based concepts. In Proceedings of the European Conference on Machine Learning, pages 280-296.
Download


Paper Citation


in Harvard Style

Martinez Ballesteros M., Rubio Escudero C., C. Riquelme J. and Martíınez-Álvarez F. (2011). MINING QUANTITATIVE ASSOCIATION RULES IN MICROARRAY DATA USING EVOLUTIVE ALGORITHMS . In Proceedings of the 3rd International Conference on Agents and Artificial Intelligence - Volume 1: ICAART, ISBN 978-989-8425-40-9, pages 574-577. DOI: 10.5220/0003152705740577


in Bibtex Style

@conference{icaart11,
author={Maria Martinez Ballesteros and Cristina Rubio Escudero and J. C. Riquelme and F. Martíınez-Álvarez},
title={MINING QUANTITATIVE ASSOCIATION RULES IN MICROARRAY DATA USING EVOLUTIVE ALGORITHMS},
booktitle={Proceedings of the 3rd International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,},
year={2011},
pages={574-577},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003152705740577},
isbn={978-989-8425-40-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,
TI - MINING QUANTITATIVE ASSOCIATION RULES IN MICROARRAY DATA USING EVOLUTIVE ALGORITHMS
SN - 978-989-8425-40-9
AU - Martinez Ballesteros M.
AU - Rubio Escudero C.
AU - C. Riquelme J.
AU - Martíınez-Álvarez F.
PY - 2011
SP - 574
EP - 577
DO - 10.5220/0003152705740577