BISTABILITY AND THE COMPLEX DEPLETION PARADOX IN THE DOUBLE PHOSPHORYLATION-DEPHOSPHORYLATION CYCLE

Guido Dell'Acqua, Alberto Bersani

Abstract

In this paper we discuss the applicability of the standard quasi steady-state approximation (sQSSA) to complex enzyme reaction networks, like the ones involved in intracellular signal transduction. In particular we focus on the dynamics of the intermediate complexes, which in common literature either are ignored or are supposed to rapidly become negligible in the quasi steady-state phase, differently from what really happens. This brings to what we call ”complex depletion paradox”, according to which complexes disappear in the conservation laws, in contrast with the equations of their dynamics. Applying the total quasi steady-state approximation (tQSSA) to the double phosphorylation-dephosphorylation cycle, we show how to solve the apparent paradox, without the need of further hypotheses, like, for example, the substrate sequestration.

References

  1. Bisswanger, H. (2002). Enzyme Kinetics. Principles and Methods. Wiley-VCH.
  2. Bluthgen, N., Bruggeman, F. J., Legewie, S., Herzel, H., Westerhoff, H. V., and Kholodenko, B. N. (2006). Effects of sequestration on signal transduction cascades. FEBS J., 273:895-906.
  3. Borghans, J., de Boer, R., and Segel, L. (1996). Extending the quasi-steady state approximation by changing variables. Bull. Math. Biol., 58:43-63.
  4. Briggs, G. E. and Haldane, J. B. S. (1925). A note on the kinetics of enzyme action. Biochem. J., 19:338-339.
  5. Camps, M., Nichols, A., and Arkinstall, S. (2000). Dual specificity phosphatases: a gene family for control of map kinase function. FASEB J., 14:6-16.
  6. Chickarmane, V., Kholodenko, B. N., and Sauro, H. M. (2007). Oscillatory dynamics arising from competitive inhibition and multisite phosphorylation. J. Theor. Biol., 244:68-76.
  7. Ciliberto, A., Capuani, F., and Tyson, J. J. (2007). Modeling networks of coupled anzymatic reactions using the total quasi-steady state approximation. PLoS Comput. Biol., 3:463-472.
  8. Flach, E. H. and Schnell, S. (2006). Use and abuse of the quasi-steady-state approximation. IEE Proceed. Syst. Biol., 153:187-191.
  9. Goldbeter, A. and Koshland, D. E. (1981). An amplified sensitivity arising from covalent modification in biological system. Proc Natl Acad Sci, 78:6840-6844.
  10. Hatakeyama, M., Kimura, S., Naka, T., Kawasaki, T., Yumoto, N., Ichikawa, M., Kim, J. H., Saito, K., Saeki, K. M., Shirouzu, M., Yokoyama, S., and Konagaya, A. (2003). A computational model on the modulation of mitogen-activated protein kinase (mapk) and akt pathways in heregulin-induced erbb signalling. Biochem. J., 373:451-463.
  11. Henri, V. (1901a). Recherches sur la loi de l'action de la sucrase. C. R. Hebd. Acad. Sci., 133:891-899.
  12. Henri, V. (1901b). Ü ber das gesetz der wirkung des invertins. Z. Phys. Chem., 39:194-216.
  13. Kholodenko, B. N. (2000). Negative feedback and ultrasensitivity can bring about oscillations in the mitogenactivated protein kinase cascades. Eur. J. Biochem., 267:1583-1588.
  14. Laidler, K. J. (1955). Theory of the transient phase in kinetics, with special reference to enzyme systems. Can. J. Chem., 33:1614-1624.
  15. Legewie, S., Schoeberl, B., N., B., and Herzel, H. (2007). Competing docking interactions can bring about bistability in the mapk cascade. Biophys. J., 93:2279- 2288.
  16. Markevich, N. I., Hoek, J. B., and B.N., K. (2004). Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J. Cell Biol., 164:353-359.
  17. Michaelis, L. and Menten, M. L. (1913). Die kinetik der invertinwirkung. Biochem. Z., 49:333-339.
  18. Ortega, F., Garces, J. L., Mas, F., Kholodenko, B. N., and Cascante, M. (2006). Bistability from double phosphorylation in signal transduction. kinetic and structural requirements. FEBS J., 273:3915-3926.
  19. Pedersen, M. and Bersani, A. M. (2010). The total quasisteady state approximation simplifies theoretical analysis at non-negligible enzyme concentrations: Pseudo first-order kinetics and the loss of zero-order ultrasensitivity. J. Math. Biol., 60:267-283.
  20. Pedersen, M. G., Bersani, A. M., and Bersani, E. (2008). Steady-state approximations in intracellular signal transduction - a word of caution. J. Math. Chem., 43:1318-1344.
  21. Sabouri-Ghomi, M., Ciliberto, A., Kar, S., Novak, B., and Tyson, J. J. (2008). Antagonism and bistability in protein interaction networks. J. Theor. Biol., 250:209- 218.
  22. Salazar, C. and Hofer, T. (2006). Kinetic models of phosphorylation cycles: A systematic approach using the rapid equilibrium approximation for protein-protein interactions. Biosystems, 83:195-206.
  23. Segel, L. (1988). On the validity of the steady state assumption of enzyme kinetics. Bull. Math. Biol., 50:579- 593.
  24. Segel, L. A. and Slemrod, M. (1989). The quasi steady-state assumption: a case study in perturbation. Siam Rev., 31:446-477.
  25. Sols, A. and Marco, R. (1970). Concentrations of metabolites and binding sites, implications in metabolic regulation. Curr. Top. Cell. Regul., 2:227-273.
  26. Straus, O. H. and Goldstein, A. (1943). Zone behavior of enzymes. J. Gen. Physiol., 26:559-585.
  27. Tzafriri, A. R. (2003). Michaelis-Menten kinetics at high enzyme concentrations. Bull. Math. Biol., 65:1111- 1129.
  28. van Slyke, D. D. and Cullen, G. E. (1914). The mode of action of urease and of enzymes in general. J. Biol. Chem., 19:141-180.
  29. Xing, J. and Chen, J. (2008). The Goldbeter-Koshland switch in the first-order region and its response to dynamic disorder. PLOS ONE, 3:e2140.
  30. Zhan, X. L., Wishart, M., and L., G. K. (2001). Nonreceptor tyrosine phosphatases in cellular signaling: regulation of mitogen-activated protein kinases. Chem. Rev., 101:2477-96.
Download


Paper Citation


in Harvard Style

Dell'Acqua G. and Bersani A. (2011). BISTABILITY AND THE COMPLEX DEPLETION PARADOX IN THE DOUBLE PHOSPHORYLATION-DEPHOSPHORYLATION CYCLE . In Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2011) ISBN 978-989-8425-36-2, pages 55-65. DOI: 10.5220/0003169800550065


in Bibtex Style

@conference{bioinformatics11,
author={Guido Dell'Acqua and Alberto Bersani},
title={BISTABILITY AND THE COMPLEX DEPLETION PARADOX IN THE DOUBLE PHOSPHORYLATION-DEPHOSPHORYLATION CYCLE},
booktitle={Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2011)},
year={2011},
pages={55-65},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003169800550065},
isbn={978-989-8425-36-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2011)
TI - BISTABILITY AND THE COMPLEX DEPLETION PARADOX IN THE DOUBLE PHOSPHORYLATION-DEPHOSPHORYLATION CYCLE
SN - 978-989-8425-36-2
AU - Dell'Acqua G.
AU - Bersani A.
PY - 2011
SP - 55
EP - 65
DO - 10.5220/0003169800550065