EXPERIMENTS IN SHORT-TERM WIND POWER PREDICTION USING VARIABLE SELECTION

Javier Lorenzo, Juan Méndez, Daniel Hernández, Modesto Castrillón

Abstract

In this paper some experiments have been realized to test how the introduction of variable selection has an effect on the predictor performance in short-term wind farm power prediction. Variable selection based on Kraskov estimation of the mutual information will be used due to its capability to deal with sets of continuous random variables. A Multilayer Percetron and a k-NN estimator will be the predictor based models with different topologies and number of neighbors. Experiments will be carried out with actual data of wind speed and power of an experimental wind farm. We also compute the output of an ideal wind turbine to enrich the dataset and estimate the effect of variable selection on one isolated turbine. This will allow us to define four different settings for the experiments which vary in the nature of the inputs to the model, wind speed, wind farm or isolated wind turbine power, and the predicted variable, wind farm or isolated wind turbine power.

References

  1. Chow, T. W. S. and Huang, D. (2005). Estimating optimal feature subsets using efficient estimation of highdimensional mutual information. IEEE Transactions on Neural Networks, 16(1):213-224.
  2. Costa, A., Crespo, A., Navarro, J., Lizcano, G., Madsen, H., and Feitosa, E. (2008). A review on the young history of the wind power short-term prediction. Renewable and Sustainable Energy Reviews, 12(6):1725-1744.
  3. Crone, S. F. and Kourentzes, N. (2010). Feature selection for time series predictiona combined filter and wrapper approach for neural networks. Neurocomputing, 73:1923-1936.
  4. Focken, U., Lange, M., Monnich, K., Waldl, H., Beyer, H., and Luig, A. (2002). Short-term prediction of the aggregated power output of wind farms - a statistical analysis of the reduction of the prediction error by spatial smoothing. Journal of Wind Engineering and Industrial Aerodynamics, 90:231-246.
  5. Guillén, A., Herrera, L., Rubio, G., Pomares, H., Lendasse, A., and Rojas, I. (2010). New method for instance or prototype selection using mutual information in time seriesprediction. Neurocomputing, 73:2030-2038.
  6. Ji, Y., Reyhani, N., and Lendasse, A. (2005). Direct and recursive prediction of time series using mutual information selection. In Computational Intelligence and Bioinspired Systems (IWANN 2005), volume 3512/2005 of Lecture Notes in Computer Science, pages 1010-1017.
  7. Kraskov, A., Stgbauer, H., and Grassberger, P. (2004). Estimating mutual information. PHYSICAL REVIEW E, 69(6):066138.
  8. Kusiak, A., Zheng, H., and Song, Z. (2009). Wind farm power prediction: A data-mining approach. Wind Energy, 12:275-293.
  9. Landberg, L. (2001). Short-term prediction of local wind conditions. Journal of Wind Engineering and Industrial Aerodynamics, 89:235245.
  10. Li, S., Wunsch, D. C., Ohair, E. A., and Giesselmann, M. G. (2001). Using neural networks to estimate wind turbine power generation. IEEE Transactions on Energy Conversion, 16(3):276-282.
  11. Méndez, J., Lorenzo, J., and Hernández, M. (2009). Experiments and reference models in training neural networks for short-term wind power forecasting in electricity markets. In Bio-Inspired Systems: Computational and Ambient Intelligence, volume 5517/2009 of Lecture Notes in Computer Science, pages 1288- 1295.
  12. MILCA (2010). Mutual information least-dependent component analysis library. http://www.klab.caltech.edu/ ~kraskov/MILCA/. Last visited july, 2010.
  13. Mohandes, M. A., Rehman, S., and Halawani, T. O. (1998). A neural networks approach for wind speed prediction. Renewable Energy, 13(3):345 - 354.
  14. Nielsen, T. S., Joensen, A., Madsen, H., Landberg, L., and Giebel, G. (1998). A new reference for wind power forecasting. Wind Energy, 1(1):29-34.
  15. Sánchez, I. (2006). Short-term prediction of wind energy production. International Journal of Forecasting, 22:43-56.
  16. Yoon, H., Yang, K., and Shahabi, C. (2005). Feature subset selection and feature ranking for multivariate time series. IEEE Transactions on Knowledge and Data Engineering, 17(9):1186-1198.
Download


Paper Citation


in Harvard Style

Lorenzo J., Méndez J., Hernández D. and Castrillón M. (2011). EXPERIMENTS IN SHORT-TERM WIND POWER PREDICTION USING VARIABLE SELECTION . In Proceedings of the 3rd International Conference on Agents and Artificial Intelligence - Volume 1: ICAART, ISBN 978-989-8425-40-9, pages 370-375. DOI: 10.5220/0003182703700375


in Bibtex Style

@conference{icaart11,
author={Javier Lorenzo and Juan Méndez and Daniel Hernández and Modesto Castrillón},
title={EXPERIMENTS IN SHORT-TERM WIND POWER PREDICTION USING VARIABLE SELECTION},
booktitle={Proceedings of the 3rd International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,},
year={2011},
pages={370-375},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003182703700375},
isbn={978-989-8425-40-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,
TI - EXPERIMENTS IN SHORT-TERM WIND POWER PREDICTION USING VARIABLE SELECTION
SN - 978-989-8425-40-9
AU - Lorenzo J.
AU - Méndez J.
AU - Hernández D.
AU - Castrillón M.
PY - 2011
SP - 370
EP - 375
DO - 10.5220/0003182703700375