STEREO VISION HEAD VERGENCE USING GPU CEPSTRAL FILTERING

Luis Almeida, Paulo Menezes, Jorge Dias

Abstract

Vergence ability is an important visual behavior observed on living creatures when they use vision to interact with the environment. The notion of active observer is equally useful for robotic vision systems on tasks like object tracking, fixation and 3D environment structure recovery. Humanoid robotics are a potential playground for such behaviors. This paper describes the implementation of a real time binocular vergence behavior using cepstral filtering to estimate stereo disparities. By implementing the cepstral filter on a graphics processing unit (GPU) using Compute Unified Device Architecture (CUDA) we demonstrate that robust parallel algorithms that used to require dedicated hardware are now available on common computers. The cepstral filtering algorithm speed up is more than sixteen times than on a current CPU. The overall system is implemented in the binocular vision system IMPEP (IMPEP Integrated Multimodal Perception Experimental Platform) to illustrate the system performance experimentally.

References

  1. Almeida, L. and Dias, J. (1999). Dense depth maps using stereo vision head. In SIRS99 the 7th International Symposium on Intelligent Robotic Systems, Coimbra, Portugal.
  2. Batista, J., Dias, J., Araú jo, H., and de Almeida, A. T. (1995). The isr multi-degree of freedom active vision robot head: Design and calibration. In SMART Program Workshop, pages 27-28. Instituto Superior Tecnico, Lisboa, Portugal.
  3. Betsis, D. and Lavest, J. (1994). Kinematic calibration of the kth head-eye system. In ISRN KTH.
  4. Bogert, B., Healy, M., and Tukey, J. W. (1963). The quefrency alanysis of time series for echoes: Cepstrum, pseudo-autocovariance, cross-cepstrurn, and saphe cracking. In Proc. Symp. Time Series Analysis, pages 209-243. John Wiley and Sons.
  5. Brown, C. M. (1988). The rochester robot. Tech. Report 257.
  6. Brown, M. Z., Burschka, D., and Hager, G. D. (2003). Advances in computational stereo. IEEE Trans. Pattern Anal. Mach. Intell., 25(8):993-1008.
  7. Coombs, D. J. (1992). Real-time gaze holding in binocular robot vision. PhD thesis, University of Rochester. Dept. of Computer Science.
  8. Dias, J., Paredes, C., Fonseca, I., Araú jo, H., Batista, J., and de Almeida, A. T. (1998). Simulating pursuit with machines- experiments with robots and artificial vision. IEEE Transactions on Robotics and Automation, 14(1):1-18.
  9. Eklundh, J. O. and Bjrkman, M. (2005). Recognition of objects in the real world from a systems perspective. Kuenstliche Intelligenz, 19(2):12-17.
  10. Ferreira, J. F., Lobo, J., and Dias, J. (2010). Bayesian realtime perception algorithms on gpu - real-time implementation of bayesian models for multimodal perception using cuda. Journal of Real-Time Image Processing, Special Issue, ISSN: 1861-8219:87-106.
  11. Garland, M., Grand, S. L., Nickolls, J., Anderson, J., Hardwick, J., Morton, S., Phillips, E., Zhang, Y., and Volkov, V. (2008). Parallel computing experiences with cuda. IEEE Micro, 28(4):13-27.
  12. Kwon, K.-C., Lim, Y.-T., Kim, N., Song, Y.-J., and Choi, Y.-S. (2009). Vergence control of binocular stereoscopic camera using disparity information. Journal of the Optical Society of Korea, 13(3).
  13. Natale, L., Metta, G., and Sandini, G. (2002). Development of auditory-evoked reflexes: Visuo-acoustic cues integration in a binocular head. Robotics and Autonomous Systems, 39(2):87-106.
  14. OpenCV (2010). OpenCV (Open Source Computer Vision), http://opencv.willowgarage.com.
  15. Perdigoto, L., Barreto, J. P., Caseiro, R., and Araú jo, H. (2009). Active stereo tracking of multiple free-moving targets. In CVPR, pages 1494-1501.
  16. POP, P. (2010). Project POP (Perception on Purpose), http://perception.inrialpes.fr/POP/.
  17. Scharstein, D. and Szeliski, R. (2002). A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision, 47(1-3):7-42.
  18. Taylor, J., Olson, T., and Martin, W. (1994). Accurate vergence control in complex scenes. CVPR, 94:540-545.
  19. Yeshurun, Y. and Schwartz, E. L. (1989). Cepstral filtering on a columnar image architecture: A fast algorithm for binocular stereo segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI11(7):759-767.
Download


Paper Citation


in Harvard Style

Almeida L., Menezes P. and Dias J. (2011). STEREO VISION HEAD VERGENCE USING GPU CEPSTRAL FILTERING . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2011) ISBN 978-989-8425-47-8, pages 665-670. DOI: 10.5220/0003319406650670


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2011)
TI - STEREO VISION HEAD VERGENCE USING GPU CEPSTRAL FILTERING
SN - 978-989-8425-47-8
AU - Almeida L.
AU - Menezes P.
AU - Dias J.
PY - 2011
SP - 665
EP - 670
DO - 10.5220/0003319406650670


in Bibtex Style

@conference{visapp11,
author={Luis Almeida and Paulo Menezes and Jorge Dias},
title={STEREO VISION HEAD VERGENCE USING GPU CEPSTRAL FILTERING},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2011)},
year={2011},
pages={665-670},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003319406650670},
isbn={978-989-8425-47-8},
}