A GRAPH DECOMPOSITION APPROACH TO WEB SERVICE MATCHMAKING

S. Lagraa, H. Seba, R. Khennoufa, H. Kheddouci

Abstract

Web service discovery is becoming a critical issue in several fields. The current approaches for service discovery and mainly semantic web services such as OWL-S are limited primarily to the matching of their inputs/outputs at the level of an ontology. Recent studies show that this approach does not suffice to discover web services and that the structure of web services has an important and necessary weight in the efficiency of the matching. The structure of a web service can be represented by a graph. The problem of matching semantic web services is then translated into a problem of graph matching. In this work, we propose a matching approach that first decomposes the web service graph into more simple sub-structures then, the matching process is achieved onto these substructures. The proposed algorithms achieve better time complexity than existing ones. We also propose a semantic similarity to enhance our structural similarity.

References

  1. Beck, M. and Freitag, B. (2006). Semantic matchmaking using ranked instance retrieval. In SMR 7806: 1st International Workshop on Semantic Matchmaking and Resource Retrieval, Co-located with VLDB.
  2. Bellur, U. and Kulkarni, R. (2007). Improved matchmaking algorithm for semantic web services based on bipartite graph matching. In ICWS'07, IEEE International Conference on Web Services.
  3. Bellur, U. and Vadodaria, H. (2008). On extending semantic matchmaking to include precondition and effect matching. In International Conference on Web Services, 2008, Beijing, China.
  4. Bellur, U., Vadodaria, H., and Gupta, A. (2008). Semantic Matchmaking Algorithms, chapter Greedy Algorithms. Witold Bednorz, InTech, Croatia.
  5. Borgwardt, K. and Kriegel, H.-P. (2005). Shortest-path kernels on graphs. In 5th Int. Conference on Data Mining, page 74-81.
  6. Bunke, H. (1999). Error correcting graph matching: On the influence of the underlying cost function. IEEE Trans. Pattern Anal. Mach. Intell., 21(9):917-922.
  7. Bunke, H. (2000). Recent developments in graph matching. In ICPR, pages 2117-2124.
  8. Bunke, H. and Allermann, G. (1983). Inexact graph matching for structural pattern recognition. Pattern Recognition Letters, 1:245-253.
  9. Corrales, J. C., Grigori, D., and Bouzeghoub, M. (2008). Behavioral matchmaking for service retrieval: Application to conversation protocols. Inf. Syst., 33(7- 8):681-698.
  10. Dijkman, R., Dumas, M., and Garcia-Banuelos, L. (2009). Business Process Management, LNCS 570, page 48-63. Springer.
  11. Dong, X., Halevy, A., Madhavan, J., Nemes, E., and Zhang, J. (2004). Simlarity search for web services. In VLDB2004, pages 372-383.
  12. Garofalakis, M. and Kumar, A. (2003). Correlating xml data streams using tree-edit distance embeddings. In ACM PODS'2003. San Diego, California, June 2003, pages 143-154. ACM Press.
  13. Gartner, T., Flach, P., and Wrobel, S. (2003). On graph kernels: Hardness results and efficient alternatives. In Springer, editor, Annual Conf. Computational Learning Theory, page 129-143.
  14. Gater, A., Grigori, D., and Bouzeghoub, M. (2010). Owls process model matchmaking. In IEEE International Conference on Web Services, July 5-10, Miami, Florida, USA.
  15. Guo, J. L. R. and Chen, D. (2005). Matching semantic web services across heterogenous ontologies. In CIT 05, the Fifth international conference on computer and information technology.
  16. Hao, Y. and Zhang, Y. (2007). Web services discovery based on schema matching. In the thirtieth Australasian conference on Computer science - Volume 62.
  17. Haussler, D. (1999). Convolution kernels on discrete structures. Technical Report UCSC-CRL-99-10, University of California, Santa Cruz.
  18. Jouili, S. and Tabbone, S. (2009). Attributed graph matching using local descriptions. In ACIVS 2009, LNCS 5807, page 89-99.
  19. Mandell, D. and McIlraith, S. (2003). A bottom-up approach to automating web service discovery, customization, and semantic translation. In Proceedings of the Twelfth International World Wide Web Conference Workshop on E-Services and the Semantic Web (ESSW),Budapest.
  20. Mbareck, N. O. A. and Tata, S. (2006). Bpel behavioral abstraction and matching. Business Process Management Workshops, pages 495-506.
  21. Mendling, J., Lassen, K., and Zdun, U. (2006). Transformation strategies between block-oriented and graphoriented process modelling languages. F. Lehner, H. Nsekabel, P. Kleinschmidt, eds. Multikonferenz Wirtschaftsinformatik, pages 297-312.
  22. Messmer, B. (1995). Efficient Graph Matching Algorithms for Preprocessed Model Graphs. PhD thesis, University of Bern, Switzerland.
  23. Messmer, B. T. and Bunke, H. (1999). A decision tree approach to graph and subgraph isomorphism detection. Pattern Recognition, 32:1979-1998.
  24. Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., and Zave, P. (2007). Matching and merging of statecharts specifications. In ICSE 2007, page 54-63.
  25. Neuhaus, M. and Bunke, H. (2006). A convolution edit kernel for errortolerant graph matching. In IEEE international conference on pattern recognition, Hong Kong, page 220-223.
  26. Paolucci, T., Kawmura, T., and Sycara, K. (2002). Semantic matching of web service capabilities. In Springer Verlag, LNCS, Proceedings of the International Semantic Web Conference.
  27. Ramon, J. and Gartner, T. (2003). Expressivity versus efficiency of graph kernels. In First International Workshop on Mining Graphs, Trees and Sequences.
  28. Riesen, K. and Bunke, H. (2009). Approximate graph edit distance computation by means of bipartite graph matching. Image and Vision Computing, 27:950-959.
  29. Sanfeliu, A. and Fu, K. (1983). A distance measure between attributed relational graphs for pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics (Part B), 13(3):353-363.
  30. Shen, Z. and Su, J. (2005). Web service discovery based on behavior signatures. SCC, 1:279-286.
  31. Suard, F. and Rakotomamonjy, A. (2007). Mesure de similarité de graphes par noyau de sacs de chemins. In 21e colloque GRETSI sur le traitement du signal et des images, Troyes.
  32. Vu, F. P. L.-H., Hauswirth, M., and Aberer, K. (2006). A search engine for qosenabled discovery of semantic web services. International Journal of Business Process Integration and Management, 1(4):244-255.
  33. Wang, Y. and Stroulia, E. (2003). Flexible interface matching for web-service discovery. In WISE'2003.
  34. Wombacher, A. (2006). Evaluation of technical measures for workflow similarity based on a pilot study. Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, 4275:255-272.
Download


Paper Citation


in Harvard Style

Lagraa S., Seba H., Khennoufa R. and Kheddouci H. (2011). A GRAPH DECOMPOSITION APPROACH TO WEB SERVICE MATCHMAKING . In Proceedings of the 7th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST, ISBN 978-989-8425-51-5, pages 31-40. DOI: 10.5220/0003338200310040


in Bibtex Style

@conference{webist11,
author={S. Lagraa and H. Seba and R. Khennoufa and H. Kheddouci},
title={A GRAPH DECOMPOSITION APPROACH TO WEB SERVICE MATCHMAKING},
booktitle={Proceedings of the 7th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST,},
year={2011},
pages={31-40},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003338200310040},
isbn={978-989-8425-51-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 7th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST,
TI - A GRAPH DECOMPOSITION APPROACH TO WEB SERVICE MATCHMAKING
SN - 978-989-8425-51-5
AU - Lagraa S.
AU - Seba H.
AU - Khennoufa R.
AU - Kheddouci H.
PY - 2011
SP - 31
EP - 40
DO - 10.5220/0003338200310040