EVALUATION OF FEATURES AND COMBINATION APPROACHES FOR THE CLASSIFICATION OF EMOTIONAL SEMANTICS IN IMAGES

Ningning Liu, Emmanuel Dellandréa, Liming Chen, Bruno Tellez

Abstract

Recognition of emotional semantics in images is a new and very challenging research direction that gains more and more attention in the research community. As an emerging topic, publications remains relatively rare and numerous issues need to be addressed. In this paper, we propose to investigate the efficiency of different types of features including low-level features and proposed semantic features for classification of emotional semantics in images. Moreover, we propose a new approach that combines different classifiers based on Dempster-Shafer’s theory of evidence, which has the ability to handle ambiguous and uncertain knowledge such as the properties of emotions. Experiments driven on the International Affective Picture System (IAPS) image databases, which is a common stimulus set frequently used in emotion psychology research, demonstrated that the proposed approach can achieve promising results.

References

  1. A. W. M Smeulders, Marcel Worring, S. S. A. G. R. J. (2000). Content-based image retrieval: the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(12):1349-1380.
  2. C. Columbo, A. Del Bimbo, P. P. (1999). Semantics in visual information retrieval. IEEE Multimedia, 6(3):38- 53.
  3. C.-H. Chan, G.-J.-F. J. (2005). Affect-based indexing and retrieval of films. ACM Multimedia, pages 427-430.
  4. C.-T. Li, M.-K. S. (2007). Emotion-based impressionism slideshow with automatic music accompaniment. ACM Multimedia, pages 839-842.
  5. Dempster, A. P. (1968). A generalization of bayesian inference. Journal of the Royal Statistical Society, Series B, 30:205-247.
  6. Itten, J. (1961). The art of color. Otto Maier Verlab, Ravensburg, Germany.
  7. J. Z.Wang, J. L. (2001). Simplicity: Semantics-sensitive integrated matching for picture libraries. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(9):947C963.
  8. K. Kuroda, M. H. (2002). An image retrieval system by impression words and specific object names iris. euro computing, 43:259-276.
  9. P. Dunker, S. Nowak, A. B. C. L. (2009). Content-based mood classification for photos and music. ACM MIR, pages 97-104.
  10. P. J. Lang, M. M. Bradley, B. N. C. (1999). The iaps: Technical manual and affective ratings. Tech. Rep. GCR in Psychophysiology.
  11. Picard, R. W. (1997). Affective computing. MIT Press, Cambridge.
  12. Q. Wu, C. Zhou, C. W. (2005). Content-based affective image classification and retrieval using support vector machines. ACII, pages 239-257.
  13. R. Datta, J. Li, J. Z. W. (2005). Content-based image retrieval: approaches and trends of the new age. ACM Workshop MIR, Singapore, pages Nov. 11-12.
  14. Robert Snelick, Umut Uludag, A. M. M. I. A. J. (2005). A survey of affect recognition methods: audio, visual and spontaneous expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(3):450-455.
  15. S. Wang, X. W. (2005). Emotion semantics image retrieval: a brief overview. ACII, pages 490-497.
  16. Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton University Press.
  17. Smets, P. (1990). The combination of evidence in the transferable belief model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(5):447-458.
  18. V.Yanulevskaya, J.C.Van Gemert, e. a. (2008). Emotional valence categorization using holistic image features. ICIP, pages 101-104.
  19. W. Wang, Q. H. (2008). A survey on emotional semantic image retrieval. ICIP, pages 117-120.
  20. W. Wei-ning, Y. Ying-lin, J. S.-m. (2006). Image retrieval by emotional semantics: A study of emotional space and feature extraction. IEEE ICSMC, 4.
  21. Z. Zeng, M. Pantic, G. I. R. T. S. H. (2009). A survey of affect recognition methods: audio, visual and spontaneous expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(1):39-58.
Download


Paper Citation


in Harvard Style

Liu N., Dellandréa E., Chen L. and Tellez B. (2011). EVALUATION OF FEATURES AND COMBINATION APPROACHES FOR THE CLASSIFICATION OF EMOTIONAL SEMANTICS IN IMAGES . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2011) ISBN 978-989-8425-47-8, pages 352-357. DOI: 10.5220/0003364603520357


in Bibtex Style

@conference{visapp11,
author={Ningning Liu and Emmanuel Dellandréa and Liming Chen and Bruno Tellez},
title={EVALUATION OF FEATURES AND COMBINATION APPROACHES FOR THE CLASSIFICATION OF EMOTIONAL SEMANTICS IN IMAGES},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2011)},
year={2011},
pages={352-357},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003364603520357},
isbn={978-989-8425-47-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2011)
TI - EVALUATION OF FEATURES AND COMBINATION APPROACHES FOR THE CLASSIFICATION OF EMOTIONAL SEMANTICS IN IMAGES
SN - 978-989-8425-47-8
AU - Liu N.
AU - Dellandréa E.
AU - Chen L.
AU - Tellez B.
PY - 2011
SP - 352
EP - 357
DO - 10.5220/0003364603520357