Silvia Anton, Florin Daniel Anton


Nowadays biometric data acquisition and processing systems for person identity verification and / or identification are increasingly used (both in military applications – person identification in military operations and war theatres, but also in civilian applications – mobile employee enrolment and accounting systems). Such systems and especially mobile biometric iris recognition systems are expensive and also brings big security issues (loosing such a mobile device can expose the company or can break the cover of a military operation by exposing personal identification data of agents or informants). This paper presents a functional architecture of a mobile, low cost system for biometric iris data type acquisition and processing for personal identity verification. The particularity of this system is that it is a low cost, but in the same time offers an acceptable performance and security level. The paper presents the hardware and software architecture, but also shows how the device is connected with other systems in order to obtain processing and storage capacity for the recognition process. The paper is structured on three chapters presenting the hardware components, the software tools and programs, the connectivity and security issues, and ends with some experimental data and conclusions.


  1. Daugman, J. G., 2004. How iris recognition works, IEEE Trans. On circuits and Systems for Video Technology, vol. 14, no. 1, pp. 21-30.
  2. Daugman, J. G., 2007. New methods in iris recognition, IEEE Trans. On Systems, Man, and Cybernetics - part B: Cybernetics, vol. 37, no. 5, pp. 1167-1175.
  3. Gumstix Inc., 2010. Overo: Setup and programming.
  4. L-1 Identity Solutions Inc., 2010. HIIDE 5 Solutions,
  5. Popescu-Bodorin N., Balas, V. E., 2010. Comparing Haar-Hilbert and Log-Gabor Based Iris Encoders on Bath Iris Image Database. IEEE SOFA 2010. (
  6. Red Hat Inc, 2007. Red Hat Enterprise Linux 5 Deployment Guide. Deployment, configuration and administration of Red Hat Enterprise Linux 5, Edition 4.
  7. University of Bath Iris Database. (2009)
  8. Wong, A., Yeung A., 2009. Network infrastructure security. Springer Science+Business Media, LLC, New York, USA. ISBN: 978-1-4419-0166-8.
  9. Kizza, J. M., 2009. A guide to computer network security. Springer-Verlag London Limited, ISBN: 978-1- 84800-917-2.
  10. Zhai, Y., Zeng, J., Gan, J., Xu, Y., 2009. A study of BPR based iris recognition method. Proceedings of the 2009 International Symposium on Information Processing (ISIP'09).
  11. Patnala, S. R., Murty, C., Reddy, E. S., Babu, I. R., 2009. Iris Recognition System Using Fractal Dimensions of Haar Patterns. International Journal of Signal Processing, Image Processing and Pattern Recognition, Vol. 2, No.3.
  12. Araghi, L. F., Shahhosseini, H., Setoudeh, F., 2010. Iris Recognition Using Neural Network. Proceedings of The International MultiConference of Engineers and Computer Scientists 2010 Vol I, IMECS 2010, March 17-19, Hong Kong.
  13. Xu, G., Zhang Z., Ma Y., 2008. An image segmentation based method for iris feature extraction. The Journal Of China Universities Of Posts And Telecommunications, Vol. 15, Issue 1.
  14. He, Z., Sun, Z., Tan, T., Qiu, X., 2008. Enhanced Usability Of Iris Recognition Via Efficient User Interface And Iris Image Restoration, ICIP 2008, 978- 1-4244-1764-3/08/$25.00.
  15. Matschitsch, S., Stogner, H., Tschinder, M., 2008. Rotation-Invariant Iris Recognition Boosting 1d Spatial-Domain Signatures To 2D, ICINCO 2008 - International Conference on Informatics in Control, Automation and Robotics.
  16. Cao, W., Hu, J., Xiao, G., Wang, S., 2005. Iris Recognition Algorithm Based on Point Covering of High-Dimensional Space and Neural Network, MLDM 2005, LNAI 3587, pp. 305 - 313, SpringerVerlag Berlin Heidelberg 2005.
  17. Kim, J. O., Joung, B. J., Chung, C. H., Hwang, J., 2005. Efficient Iris-Region Normalization for a Video Surveillance System, HSI 2005, LNCS 3597, pp. 353- 356, Springer-Verlag Berlin Heidelberg 2005.
  18. Ganeshan, B., Theckedath, D., Young, R., Chatwin, C., 2006. Biometric iris recognition system using a fast and robust iris localization and alignment procedure, Optics and Lasers in Engineering 44 (2006) 1-24.
  19. Chen, Y., Adjouadi, M., Han, C., Wang, J., Barreto, A., Rishe, N., Andrian, J., 2010. A highly accurate and computationally efficient approach for unconstrained iris segmentation, Image and Vision Computing 28 (2010) 261-269.
  20. Jeong, D. S., Hwang, J. W., Kang, B. J., Park, K. R., Won, C. S., Park, D. K., Kim, J., 2010. A new iris segmentation method for non-ideal iris images, Image and Vision Computing 28 (2010) 254-260.
  21. Ren, X., Peng, Z., Zeng, Q., Peng, Q., Zhang, J., Wu, S., Zeng, Y., 2008. An improved method for Daugman's iris localization algorith., Computers in Biology and Medicine 38 (2008) 111 - 115.
  22. Perez, C. A., Aravena, C. M., Vallejos, J. I., Estevez, P. A., Held, C. M., 2010. Face and iris localization using templates designed by particle swarm optimization. Pattern Recognition Letters 31 (2010) 857-868.

Paper Citation

in Harvard Style

Anton S. and Anton F. (2011). MOBILE IRIS RECOGNITION SYSTEM - A Low Cost Approach . In Proceedings of the 1st International Conference on Pervasive and Embedded Computing and Communication Systems - Volume 1: PECCS, ISBN 978-989-8425-48-5, pages 237-242. DOI: 10.5220/0003400502370242

in Bibtex Style

author={Silvia Anton and Florin Daniel Anton},
booktitle={Proceedings of the 1st International Conference on Pervasive and Embedded Computing and Communication Systems - Volume 1: PECCS,},

in EndNote Style

JO - Proceedings of the 1st International Conference on Pervasive and Embedded Computing and Communication Systems - Volume 1: PECCS,
SN - 978-989-8425-48-5
AU - Anton S.
AU - Anton F.
PY - 2011
SP - 237
EP - 242
DO - 10.5220/0003400502370242