SUMMARY OF LASSO AND RELATIVE METHODS

Xia Jianan, Sun Dongyi, Xiao Fan

Abstract

Feature Selection is one of the focuses in pattern recognition field. To select the most obvious features, there are some feature selection methods such as LASSO, Bridge Regression and so on. But all of them are limited in select feature. In this paper, a summary is listed. And also the advantages and limitations of every method are listed. By the end, an example of LASSO using in identification of Traditional Chinese Medicine is introduced to show how to use these methods to select the feature.

References

  1. Breiman, L., 1995. Better Subset Regression Using the Nonnegative Garrote. Technometrics, 37, 373-384.
  2. E. Frank and Jerome H. Friedman, 1993. A Statistical View of Some Chemometrics Regression Tools. Technometrics, 35(2), 109-135.
  3. E. Hoerl, Robert W. Kennard., 1970. Ridge Regression: Applications to Nonorthogonal Problems. Technometrics, 12(1), 69-82.
  4. Tibshirani, R., 1996. Regression shrinkage and selection via the Lasso. J. Roy. Stat. Soc. B, 58, 267-288.
  5. Wenjiang J. Fu, 1998. Penalized Regressions: The Bridge versus the Lasso. Journal of Computational and Graphical Statistics, 7(3), 397-416.
  6. Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R., 2004. Least angle regression. Ann. Stat., 32, 407-499.
  7. Peng Zhao, Bin Yu., 2007. Stagewise Lasso. The Journal of Machine Learning Research, 8.
  8. Tibshirani, R., Saunders, M., Rosset, S., Zhu, Ji., Knight,Keith., 2005. Sparsity and smoothness via the fused lasso. Journal of the Royal Statistical Society Series B, 67, 91-108.
  9. Zou, H., 2006. The Adaptive Lasso and its Oracle Properties. Journal of the American Statistical Association, 101, 1418-1429.
  10. Meinshausen, N., 2007. Relaxed Lasso Computational Statistics and Data Analysis, 52,374-393.
  11. Yuan, M., Lin, Y., 2006. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1), 49-67.
  12. Zou, H., Hastie, T., 2005. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B, 67, 301-320.
  13. Peng Xiaoling, 2005.Variable Selection Methods and Their Applications in Quantitative Structure ? Property Relationship (QSPR).
  14. Yuan, M., Lin, Y., 2006. Model selection and estimation in regression with Grouped variables.Journal of the Royal Statistical Society Series B, 68, 49-67.
  15. Fu, W. J., 1998. Penalized regressions: the bridge VS the lasso. Journal of Computational and Graphical Statistics, 7,397-416.
Download


Paper Citation


in Harvard Style

Jianan X., Dongyi S. and Fan X. (2011). SUMMARY OF LASSO AND RELATIVE METHODS . In Proceedings of the 13th International Conference on Enterprise Information Systems - Volume 2: ICEIS, ISBN 978-989-8425-54-6, pages 131-134. DOI: 10.5220/0003426901310134


in Bibtex Style

@conference{iceis11,
author={Xia Jianan and Sun Dongyi and Xiao Fan},
title={SUMMARY OF LASSO AND RELATIVE METHODS},
booktitle={Proceedings of the 13th International Conference on Enterprise Information Systems - Volume 2: ICEIS,},
year={2011},
pages={131-134},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003426901310134},
isbn={978-989-8425-54-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 13th International Conference on Enterprise Information Systems - Volume 2: ICEIS,
TI - SUMMARY OF LASSO AND RELATIVE METHODS
SN - 978-989-8425-54-6
AU - Jianan X.
AU - Dongyi S.
AU - Fan X.
PY - 2011
SP - 131
EP - 134
DO - 10.5220/0003426901310134