ANALYSIS AND COMPUTATION OF OPTIMAL BOUNDS OF BI-DIRECTIONAL FRAMES

Xiaofang Chen, Cishen Zhang, Jingxin Zhang

Abstract

Frames are mathematical tools which can represent redundancies in many application problems. In the studies of frames, the frame bounds and frame bound ratio are very important indices characterizing the robustness and numerical performance of frame systems. In this paper, the frame bounds of a class of frame, which can be modeled by the bi-directional impulse response of linear time systems, are analyzed and computed. By using the state space approach, the tightest lower and upper frame bounds can be directly and efficiently computed.

References

  1. Bayram, I. and Selesnick, I. W. (2009). On the frame bounds of iterated filter banks. Applied and Computational Harmonic Analysis, 27(2):255-262.
  2. Benedettom, J. J., Powell, A. M., and Yilmaz, d. O. (2006). Sigma-delta quantization and finite frames. IEEE Transactions on Information Theory, 52(5):1990- 2005.
  3. Bernardini, R. and Rinaldo, R. (2006). Bounds on error amplification in oversampled filter banks for robust transmission. IEEE Transactions on Signal Processing, 54(4):1399-1411.
  4. Bolcskei, H., Halwatsch, F., and Feichtinger, H. G. (1998). Frame-theoretic analysis of oversampled filter banks. IEEE Trans. Signal Processing, 46(12):3256-3268.
  5. Bolcskei, H. and Hlawatsch, F. (2001). Noise reduction in oversampled filter banks using predictive quantization. IEEE Transactions on Information Theory, 47(1):155-172.
  6. Burt, P. J. and Adelson, E. H. (1983). The lapacian pyramid as a compact image code. IEEE Transactions on Communications, 31(4):532-540.
  7. Casazza, P. G. (2001). Modern tools for weyl-heisenberg (gabor) frame theory. Advances in Imaging and Electron Physics, 115:1-127.
  8. Chai, L., Zhang, J., and Zhang, C. (2007). Frame-theorybased analysis and design of oversampled filter banks: direct computational method. IEEE Transations on Signal Processing, 55(2):507-519.
  9. Chai, L., Zhang, J., Zhang, C., and Mosca, E. (2008). Efficient computation of frame bounds using lmi-based optimization. IEEE Transations on Signal Processing, 56(7):3029-3033.
  10. Christensen, O. (2003). An Introduction to Frames and Riesz Bases. Birkhauser.
  11. Cvetkovic, Z. and Vetterli, M. (1998). Oversampled filter banks. IEEE Transactions on Signal Processing, 46(5):1245-1255.
  12. Daubechies, I. (1990). The wavelet transform, timefrequency localization and signal analysis. IEEE transactions on information theory, 36(5):961-1005.
  13. Daubechies, I. (1992). Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics.
  14. Daubechies, I., Grossman, A., and Meyer, Y. (1986). Painless nonorthogonal expansions. Journal of Mathematical Physcics, 27(5):1271-1283.
  15. Dewilde, P. and Van Der Veen, A.-J. (1998). Time-Varying Systems and Computations. Kluwer Academic Publisher Boston.
  16. Dragotti, P., Velisavljevic, V., Vetterli, M., and BeferullLozano, B. (Aug. 2003). Discrete directinoal wavelet bases and frames for image compression and denoising. Proc.SPIE Conf. Wavelet Applications Signal Image Processing, pages 1287-1295.
  17. Duffin, R. J. and Schaeffer, A. C. (1952). A class of nonharmonic fourier series. Transactions of the American Mathematical Society, 72(2):341-366.
  18. Heil, C. and Walnut, D. (1989). Continuous and discrete wavelet transforms. SIAM Review, 31(4):628-666.
  19. Herley, C. and Vetterli, M. (1993). Wavelets and recursive filter banks. IEEE Transactions on Signal Processing, 41(8):2536-2556.
  20. Mertins, A. (2003). Frame analysis for biothogonal cosinemodulated filterbanks. IEEE Transactions on Signal Processing, 51(1):172-181.
  21. Rantzer, A. (1996). On the kalman-yakubovich-popov lemma. Systems and Control Letters, 28(1):7-10.
  22. Shu, H. and Chen, T. (1996). On causality and anticausality of cascaded discrete-time systems. IEEE Transactions on Circuit and Systems I: Fundamental Theory and Applications, 43(3):240-242.
  23. Stanhill, D. and Yehoshua Zeevi, Y. (1998). Frame analysis of wavelet-type filter banks. Signal Processing, 67(2):125-139.
  24. Vetterli, M. and Cvetkovic, Z. (1996). Oversampled fir filter banks and frames in l2(z). In IEEE Interational Conference on Acoustic, Speech, and Signal Processing Conference Proceddings, pages 1530-1533.
Download


Paper Citation


in Harvard Style

Chen X., Zhang C. and Zhang J. (2011). ANALYSIS AND COMPUTATION OF OPTIMAL BOUNDS OF BI-DIRECTIONAL FRAMES . In Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-8425-74-4, pages 243-250. DOI: 10.5220/0003437802430250


in Bibtex Style

@conference{icinco11,
author={Xiaofang Chen and Cishen Zhang and Jingxin Zhang},
title={ANALYSIS AND COMPUTATION OF OPTIMAL BOUNDS OF BI-DIRECTIONAL FRAMES},
booktitle={Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2011},
pages={243-250},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003437802430250},
isbn={978-989-8425-74-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - ANALYSIS AND COMPUTATION OF OPTIMAL BOUNDS OF BI-DIRECTIONAL FRAMES
SN - 978-989-8425-74-4
AU - Chen X.
AU - Zhang C.
AU - Zhang J.
PY - 2011
SP - 243
EP - 250
DO - 10.5220/0003437802430250