THE WINDSURF LIBRARY FOR THE EFFICIENT RETRIEVAL OF MULTIMEDIA HIERARCHICAL DATA

Ilaria Bartolini, Marco Patella, Guido Stromei

Abstract

Several modern multimedia applications require the management of complex data, that can be defined as hierarchical objects consisting of several component elements. In such scenarios, the concept of similarity between complex objects clearly recursively depends on the similarity between component data, making difficult the resolution of several common tasks, like processing of queries and understanding the impact of different alternatives available for the definition of similarity between objects. To overcome such limitations, in this paper we present the WINDSURF library for management of multimedia hierarchical data. The goal of the library is to provide a general framework for assessing the performance of alternative query processing techniques for efficient retrieval of complex data that arise in several multimedia applications, such as image/video retrieval and the comparison of collection of documents. We designed the library so as to include characteristics of generality, flexibility, and extensibility: these are provided by way of a number of different templates that can be appropriately instantiated in order to realize the particular retrieval model needed by the user.

References

  1. Ardizzoni, S., Bartolini, I., Patella, M. Windsurf: Regionbased image retrieval using wavelets. In: IWOSS'99. pp. 167-173. Florence, Italy (Sep 1999).
  2. Bartolini, I., Ciaccia, P., Oria, V., O zsu, T. Flexible integration of multimedia sub-queries with qualitative preferences. Multimedia Tools and Applications, 33(3), 275-300 (June 2007).
  3. Bartolini, I., Ciaccia, P., Patella, M. Query processing issues in region-based image databases. Knowledge and Information Systems, 25(2), 389-420 (Nov 2010).
  4. Bartolini, I., Patella, M., and Romani, C. SHIATSU: Semantic-Based Hierarchical Automatic Tagging of Videos by Segmentation using Cuts. In AIEMPro 2010. Florence, Italy, (Sep 2010).
  5. Chávez, E., Navarro, G., Baeza-Yates, R., Marroquín, J. L. Proximity searching in metric spaces. ACM Computing Surveys, 33(3), 273-321 (Sep 2001).
  6. Ciaccia, P., Patella, M., Zezula, P. M-tree: An efficient access method for similarity search in metric spaces. In: VLDB'97. pp. 426-435. Athens, Greece (Aug 1997).
  7. Fei-Fei, L., Fergus, R., and Torralba, A. Recognizing and learning object categories. CVPR 2007 short course.
  8. Minneapolis, MN (June 2007).
  9. Fishburn, P. Preference structures and their numerical representations. Theoretical Computer Science, 217(2), 359-383 (Apr 1999).
  10. Gaede, V., Günther, O. Multidimensional access methods. ACM Computing Surveys, 30(2), 170-231 (June 1998).
  11. Grauman, K. Efficiently searching for similar images. Communications of the ACM, 53(6), 84-94 (June 2010).
  12. Guttman, A. R-trees: A dynamic index structure for spatial searching. In: SIGMOD'84. pp. 47-57. Boston, MA (June 1984).
  13. Hjaltason, G. R., Samet, H. Distance browsing in spatial databases. ACM TODS, 24(2), 265-318 (June 1999).
  14. Hjaltason, G. R., Samet, H. Index-driven similarity search in metric spaces. ACM TODS, 28(4), 517-580 (Dec 2003).
  15. Ilyas, I. F., Beskales, G., Soliman, M. A. A survey of topk query processing techniques in relational database systems. ACM Computing Surveys, 40(4) (Oct 2008).
  16. Kailath, T. The divergence and Bhattacharyya distance measures in signal selection. IEEE Transactions on Communication Technology, 15(1), 52-60 (Feb 1967).
  17. Kuhn, H. W. The hungarian method for the assignment problem. Naval Research Logistic Quarterly, 2, 83- 97 (1955).
  18. Rubner, Y., Tomasi, C. Perceptual Metrics for Image Database Navigation. Kluwer, Boston, MA (Dec 2000).
  19. Salton, G. Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer. Addison-Wesley, Reading, MA (1989).
  20. Wu, L., Hoi, S. C. H., Jin, R., Zhu, J., Yu., N. Distance metric learning from uncertain side information with application to automated photo tagging. In: ACM MM'09. pp. 135-144. Vancouver, Canada (Oct 2009).
  21. Wang, J. Z., Li, J., Wiederhold, G. SIMPLIcity: Semanticssensitive Integrated Matching for Picture LIbraries. IEEE TPAMI, 23(9), 947-963 (Sep 2001).
  22. Zezula, P., Amato, G., Dohnal, V., Batko, M. Similarity Search - The Metric Space Approach, Advances in Database Systems, vol. 32. Springer (2006).
Download


Paper Citation


in Harvard Style

Bartolini I., Patella M. and Stromei G. (2011). THE WINDSURF LIBRARY FOR THE EFFICIENT RETRIEVAL OF MULTIMEDIA HIERARCHICAL DATA . In Proceedings of the International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2011) ISBN 978-989-8425-72-0, pages 139-148. DOI: 10.5220/0003451701390148


in Bibtex Style

@conference{sigmap11,
author={Ilaria Bartolini and Marco Patella and Guido Stromei},
title={THE WINDSURF LIBRARY FOR THE EFFICIENT RETRIEVAL OF MULTIMEDIA HIERARCHICAL DATA},
booktitle={Proceedings of the International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2011)},
year={2011},
pages={139-148},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003451701390148},
isbn={978-989-8425-72-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2011)
TI - THE WINDSURF LIBRARY FOR THE EFFICIENT RETRIEVAL OF MULTIMEDIA HIERARCHICAL DATA
SN - 978-989-8425-72-0
AU - Bartolini I.
AU - Patella M.
AU - Stromei G.
PY - 2011
SP - 139
EP - 148
DO - 10.5220/0003451701390148