HAND IMAGE SEGMENTATION BY MEANS OF GAUSSIAN MULTISCALE AGGREGATION FOR BIOMETRIC APPLICATIONS

Alberto de Santos Sierra, Carmen Sánchez Ávila, Javier Guerra Casanova, Gonzalo Bailador del Pozo

Abstract

Applying biometrics to daily scenarios involves demanding requirements in terms of software and hardware. On the contrary, current biometric techniques are also being adapted to present-day devices, like mobile phones, laptops and the like, which are far from meeting the previous stated requirements. In fact, achieving a combination of both necessities is one of the most difficult problems at present in biometrics. Therefore, this paper presents a segmentation algorithm able to provide suitable solutions in terms of precision for hand biometric recognition, considering a wide range of backgrounds like carpets, glass, grass, mud, pavement, plastic, tiles or wood. Results highlight that segmentation accuracy is carried out with high rates of precision (F-measure≥88%)), presenting competitive time results when compared to state-of-the-art segmentation algorithms time performance.

References

  1. Alpert, S., Galun, M., Basri, R., and Brandt, A. (2007). Image segmentation by probabilistic bottom-up aggregation and cue integration. In IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR 7807., pages 1-8.
  2. Chen, S., Cao, L., Wang, Y., Liu, J., and Tang, X. (2010). Image segmentation by map-ml estimations. Image Processing, IEEE Transactions on, 19(9):2254 -2264.
  3. Comaniciu, D., Meer, P., and Member, S. (2002). Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24:603-619.
  4. de Berg, M., van Kreveld, M., Overmars, M., and Schwarzkopf, O. (2008). Computational Geometry: Algorithms and Applications. Springer, 3rd edition.
  5. Felzenszwalb, P. F. and Huttenlocher, D. P. (2004). Efficient graph-based image segmentation. Int. J. Comput. Vision, 59:167-181.
  6. García-Casarrubios Mun˜oz, A., de Santos-Sierra, A., Sánchez-Í vila, C., Guerra-Casanova, J., Bailador-del Pozo, G., and Jara-Vera, V. (2010). Hand biometric segmentation by means of fuzzy multiscale aggregation for mobile devices. In Emerging Techniques and Challenges for Hand-Based Biometrics (ETCHB), 2010 International Workshop on, pages 1 -6.
  7. Gonzalez, R. C. and Woods, R. E. (1992). Digital Image Processing. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.
  8. Kang, W.-X., Yang, Q.-Q., and Liang, R.-P. (2009). The comparative research on image segmentation algorithms. In ETCS 7809: Proceedings of the 2009 First International Workshop on Education Technology and Computer Science, pages 703-707, Washington, DC, USA. IEEE Computer Society.
  9. Kukula, E. and Elliott, S. (2005). Implementation of hand geometry at purdue university's recreational center: an analysis of user perspectives and system performance. In Security Technology, 2005. CCST 7805. 39th Annual 2005 International Carnahan Conference on, pages 83-88.
  10. Kukula, E. and Elliott, S. (2006). Implementation of hand geometry: an analysis of user perspectives and system performance. Aerospace and Electronic Systems Magazine, IEEE, 21(3):3-9.
  11. Meila?, M. (2005). Comparing clusterings: an axiomatic view. In Proceedings of the 22nd international conference on Machine learning, ICML 7805, pages 577-584, New York, NY, USA. ACM.
  12. Mojsilovic, A., Hu, H., and Soljanin, E. (2002). Extraction of perceptually important colors and similarity measurement for image matching, retrieval and analysis. Image Processing, IEEE Transactions on, 11(11):1238 - 1248.
  13. Rory Tait Neilson, B. N. and McDonald, S. (2007). Image segmentation by weighted aggregation with gradient orientation histograms. Southern African Telecommunication Networks and Applications Conference (SATNAC).
  14. Sharon, E., Brandt, A., and Basri, R. (2000). Fast multiscale image segmentation. In IEEE Conference on Computer Vision and Pattern Recognition, 2000. Proceedings., volume 1, pages 70 -77 vol.1.
  15. Sharon, E., Brandt, A., and Basri, R. (2001). Segmentation and boundary detection using multiscale intensity measurements. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001., volume 1, pages I-469 - I-476 vol.1.
  16. Sharon, E., Galun, M., Sharon, D., Basri, R., and Brandt, A. (2006). Hierarchy and adaptivity in segmenting visual scenes. Macmillan Publishing Ltd.
  17. Shi, J. and Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22:888-905.
  18. Shirakawa, S. and Nagao, T. (2009). Evolutionary image segmentation based on multiobjective clustering. In Tan, W., Wu, C., Zhao, S., and Chen, S. (2009). Hand extraction using geometric moments based on active skin color model. In Intelligent Computing and Intelligent Systems, 2009. ICIS 2009. IEEE International Conference on, volume 4, pages 468-471.
  19. Unnikrishnan, R., Pantofaru, C., and Hebert, M. (2007). Toward objective evaluation of image segmentation algorithms. IEEE Trans. Pattern Anal. Mach. Intell., 29:929-944.
Download


Paper Citation


in Harvard Style

de Santos Sierra A., Sánchez Ávila C., Guerra Casanova J. and Bailador del Pozo G. (2011). HAND IMAGE SEGMENTATION BY MEANS OF GAUSSIAN MULTISCALE AGGREGATION FOR BIOMETRIC APPLICATIONS . In Proceedings of the International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2011) ISBN 978-989-8425-72-0, pages 40-46. DOI: 10.5220/0003462500400046


in Bibtex Style

@conference{sigmap11,
author={Alberto de Santos Sierra and Carmen Sánchez Ávila and Javier Guerra Casanova and Gonzalo Bailador del Pozo},
title={HAND IMAGE SEGMENTATION BY MEANS OF GAUSSIAN MULTISCALE AGGREGATION FOR BIOMETRIC APPLICATIONS},
booktitle={Proceedings of the International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2011)},
year={2011},
pages={40-46},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003462500400046},
isbn={978-989-8425-72-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2011)
TI - HAND IMAGE SEGMENTATION BY MEANS OF GAUSSIAN MULTISCALE AGGREGATION FOR BIOMETRIC APPLICATIONS
SN - 978-989-8425-72-0
AU - de Santos Sierra A.
AU - Sánchez Ávila C.
AU - Guerra Casanova J.
AU - Bailador del Pozo G.
PY - 2011
SP - 40
EP - 46
DO - 10.5220/0003462500400046