FAULT DIAGNOSIS OF BATCH PROCESSES RELEASE USING PCA CONTRIBUTION PLOTS AS FAULT SIGNATURES

Alberto Wong Ramírez, Joan Colomer Llinàs

Abstract

The diagnosis of qualitative variables in certain types of batch processes requires time to measure the variables and obtain the final result of the released product. With principal component analysis (PCA) any abnormal behavior of the process can be detected. This study proposes a method that uses contribution plots as fault signatures (FS) on the different stages and variables of the process to diagnose the quality variables from the released product. Therefore, in a product resulting from the abnormal behavior of a process the qualitative variables that need to be measured could be obtained through the quantitative variables of the process by classifying the FS with a knowledge model from a fault signature database (FSD) extracted with a classification algorithm. The method is tested in a biological nutrient removal (BNR) sequencing batch reactor (SBR) for wastewater treatment to diagnose qualitative variables of the process: ammonium (NH+4 ), nitrates (NO−2 or NO−3) and phosphate (PO3−4).

References

  1. Barker, M. and Rawtani, J. (2005). Practical Batch Process Management. Elsevier.
  2. Cleary, J. G. and Trigg, L. E. (1995). K*: An instancebased learner using an entropic distance measure. In 12th International Conference on Machine Learning (1995), pages 108-114.
  3. Fan, L. and Xu, Y. (2007). A pca-combined neural network software sensor for sbr processes. In Liu, D., Fei, S., Hou, Z., Zhang, H., and Sun, C., editors, Advances in Neural Networks ISNN 2007, volume 4492 of Lecture Notes in Computer Science, pages 1042- 1047. Springer Berlin / Heidelberg.
  4. Hong, S. H., Lee, M. W., Lee, D. S., and Park, J. M. (2007). Monitoring of sequencing batch reactor for nitrogen and phosphorus removal using neural networks. Biochemical Engineering Journal, 35(3):365 - 370.
  5. Kim, Y., Bae, H., Poo, K., Kim, J., Moon, T., Kim, S., and Kim, C. (2006). Soft sensor using pnn model and rule base for wastewater treatment plant. In Wang, J., Yi, Z., Zurada, J., Lu, B.-L., and Yin, H., editors, Advances in Neural Networks - ISNN 2006, volume 3973 of Lecture Notes in Computer Science, pages 1261- 1269. Springer Berlin / Heidelberg.
  6. Kourti, T. (2005). Application of latent variable methods to process control and multivariate statistical process control in industry. Int. J. Adapt. Control, 19:213-246.
  7. Lee, D. S. and Park, J. M. (1999). Neural network modeling for on-line estimation of nutrient dynamics in a sequentially-operated batch reactor. Journal of Biotechnology, 75(2-3):229 - 239.
  8. Lee, Y.-H., Lee, D.-Y., and Han, C. (1999). Rmbatch: Intelligent real-time monitoring and diagnosis system for batch processes. Computers & Chemical Engineering, 23(Supplement 1):S699 - S702. European Symposium on Computer Aided Process Engineering, Proceedings of the European Symposium.
  9. Leung, D. and Romagnoli, J. (2002). An integration mechanism for multivariate knowledge-based fault diagnosis. Journal of Process Control, 12(1):15 - 26.
  10. Nomikos, P. and MacGregor, J. F. (1994). Monitoring batch processes using multiway principal component analysis. AIChE J., 40(8):1361-1375.
  11. Nomikos, P. and MacGregor, J. F. (1995). Multivariate spc charts for monitoring batch processes. Technometrics, 37(1):41-59.
  12. Puig, S., Corominas, L., Balaguer, M., and Colprim, J. (2007). Biological nutrient removal by applying sbr technology in small wastewater treatment plants: Carbon source and c/n/p ratio effects. Water Sci. Technol., 55(7):135-141.
  13. Westerhuis, J. A., G., S. P., and Smilde, A. K. (2000). Generalize contribution plots in multivariate statistical process monitoring. Chemom. Intell. Lab. Syst., 51:95-114.
  14. Wold, S., Esbensen, K., and Geladi, P. (1987). Principal component analysis. Chemom. Intell. Lab. Syst., 2(1):37-52.
  15. Wong, A., Colomer, J., Coma, M., and Colprim, J. (2010). Pca intelligent contribution analysis for fault diagnosis in a sequencing batch reactor. In Proceedings of the iEMSs Fifth Biennial Conference, volume 3, pages 2230-2237.
  16. Xiao, F., Wang, S., Xu, X., and Ge, G. (2009). An isolation enhanced pca method with expert-based multivariate decoupling for sensor fdd in air-conditioning systems. Applied Thermal Engineering, 29(4):712 - 722.
Download


Paper Citation


in Harvard Style

Wong Ramírez A. and Colomer Llinàs J. (2011). FAULT DIAGNOSIS OF BATCH PROCESSES RELEASE USING PCA CONTRIBUTION PLOTS AS FAULT SIGNATURES . In Proceedings of the 13th International Conference on Enterprise Information Systems - Volume 1: ICEIS, ISBN 978-989-8425-53-9, pages 223-228. DOI: 10.5220/0003500102230228


in Bibtex Style

@conference{iceis11,
author={Alberto Wong Ramírez and Joan Colomer Llinàs},
title={FAULT DIAGNOSIS OF BATCH PROCESSES RELEASE USING PCA CONTRIBUTION PLOTS AS FAULT SIGNATURES},
booktitle={Proceedings of the 13th International Conference on Enterprise Information Systems - Volume 1: ICEIS,},
year={2011},
pages={223-228},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003500102230228},
isbn={978-989-8425-53-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 13th International Conference on Enterprise Information Systems - Volume 1: ICEIS,
TI - FAULT DIAGNOSIS OF BATCH PROCESSES RELEASE USING PCA CONTRIBUTION PLOTS AS FAULT SIGNATURES
SN - 978-989-8425-53-9
AU - Wong Ramírez A.
AU - Colomer Llinàs J.
PY - 2011
SP - 223
EP - 228
DO - 10.5220/0003500102230228