APPLYING ONE CLASS CLASSIFIER TECHNIQUES TO REDUCE MAINTENANCE COSTS OF EAI

Iñaki Fernández de Viana, Pedro J. Abad, José L. Álvarez, José L. Arjona

Abstract

Reducing maintenance costs of Enterprise Application Integration (EAI) solutions becomes a challenge when you are trying to integrate friendly web applications. This problem can be solved if we use automated systems which allow navigating, extracting, structuring and verifying relevant information. The verification task aims to check if the information is correct. In this work we intend to solve the verify problem regarding One Class Classification Problem. One Class Classification Problems are classification problems where the training set contains classes that have either no instances at all or very few. During training, in the verify problem, we only have instances of the classes we know. Therefore, the One Class Classifier techniques could be applied. In order to evaluate the performance of these methods we use different databases proposed in the current literature. Statistical analyses of the results obtained by some basic One Class Classification techniques will be described.

References

  1. Bernstein, P. A. and Haas, L. M. (2008). Information integration in the enterprise. Commun. ACM, 51(9):72- 79.
  2. Chandola, V., Banerjee, A., and Kumar, V. (2009). Anomaly detection: A survey. ACM Computing Surveys, 41(3).
  3. Chidlovskii, B., Roustant, B., and Brette, M. (2006). Documentum eci self-repairing wrappers: performance analysis. In SIGMOD 7806: Proceedings of the 2006 ACM SIGMOD international conference on Management of data, pages 708-717, New York, NY, USA. ACM.
  4. Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7:1-30.
  5. García, S., Fernández, A., Luengo, J., and Herrera, F. (2010). Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Information Sciences, 180(10):2044-2064. Special Issue on Intelligent Distributed Information Systems.
  6. Hempstalk, K., Frank, E., and Witten, I. H. (2008). Oneclass classification by combining density and class probability estimation. In Proceedings of the 2008 European Conference on Machine Learning and Knowledge Discovery in Databases - Part I, ECML PKDD 7808, pages 505-519, Berlin, Heidelberg. SpringerVerlag.
  7. Hodge, V. J. and Austin, J. (2004). A survey of outlier detection methodologies. Artificial Intelligence Review, 22:2004.
  8. Kushmerick, N. (2000). Wrapper induction: Efficiency and expressiveness. Artificial Intelllligence, 118(1-2):15- 68.
  9. Lerman, K., Minton, S. N., and Knoblock, C. A. (2003). Wrapper maintenance: A machine learning approach. Journal of Artificial Intelligence Research, 18:2003.
  10. Madhavan, J., Cohen, S., Halevy, A. Y., Jeffery, S. R., Dong, X. L., Ko, D., and Yu, C. (2007). Web-scale data integration: You can afford to pay as you go. In CIDR, pages 342-350.
  11. McCann, R., AlShebli, B., Le, Q., Nguyen, H., Vu, L., and Doan, A. (2005). Mapping maintenance for data integration systems. In VLDB 7805: Proceedings of the 31st international conference on Very large data bases, pages 1018-1029. VLDB Endowment.
  12. Tax, D. (2009). Ddtools, the data description toolbox for matlab. version 1.7.3.
  13. Tax, D. M. J. (2001). One-class classification, concept learning in the absence of counter example. PhD thesis, Delft University of Technology.
  14. Villalba, S. D. and Cunningham, P. (2007). An evaluation of dimension reduction techniques for one-class classification. Artificial Intelligence Review, 27(4):273-294.
  15. Weiss, J. (2005). Aligning relationships: Optimizing the value of strategic outsourcing. Technical report, IBM.
Download


Paper Citation


in Harvard Style

Fernández de Viana I., J. Abad P., L. Álvarez J. and L. Arjona J. (2011). APPLYING ONE CLASS CLASSIFIER TECHNIQUES TO REDUCE MAINTENANCE COSTS OF EAI . In Proceedings of the 6th International Conference on Software and Database Technologies - Volume 1: ICSOFT, ISBN 978-989-8425-76-8, pages 41-46. DOI: 10.5220/0003503800410046


in Bibtex Style

@conference{icsoft11,
author={Iñaki Fernández de Viana and Pedro J. Abad and José L. Álvarez and José L. Arjona},
title={APPLYING ONE CLASS CLASSIFIER TECHNIQUES TO REDUCE MAINTENANCE COSTS OF EAI},
booktitle={Proceedings of the 6th International Conference on Software and Database Technologies - Volume 1: ICSOFT,},
year={2011},
pages={41-46},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003503800410046},
isbn={978-989-8425-76-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Software and Database Technologies - Volume 1: ICSOFT,
TI - APPLYING ONE CLASS CLASSIFIER TECHNIQUES TO REDUCE MAINTENANCE COSTS OF EAI
SN - 978-989-8425-76-8
AU - Fernández de Viana I.
AU - J. Abad P.
AU - L. Álvarez J.
AU - L. Arjona J.
PY - 2011
SP - 41
EP - 46
DO - 10.5220/0003503800410046