ROBUSTIFIED CONTROL OF A MULTIVARIABLE ROBOT

Emanuel Dogaru, Cristina Stoica, Emmanuel Godoy

Abstract

This paper presents the application of several advanced control techniques to a nonlinear strongly coupled multivariable robot. The main difficulties come from the flexibility of the mechanical chain, but also from the lack of joints sensors. In a first stage, a state-feedback linear quadratic (LQG) technique and a model predictive control (MPC) are designed using optimal observers. Considering additional sensors that provide measurements of accelerations increases the robustness of the controlled system. The second stage consists into adding a supplementary robustness layer (i.e. explicitly considering the robust stability under unstructured uncertainties) on the stabilizing MPC developed at the previous stage. Comparative results are proposed highlighting the trade-off between robust stability and nominal performance for disturbances rejection.

References

  1. Al Assad, O., Godoy, E., Croulard, V., 2008. Macroscopic drive chain efficiency modeling using state machines. 17th IFAC World Congress, Seoul, pp. 2294-2299.
  2. Al Assad, O., Godoy, E., Croulard, V., 2007. Irreversibility modeling applied to the control of complex robotic drive chains. 4th ICINCO, Angers, pp. 217-222.
  3. Book, W. J., 1989. Modelling, design, and control of flexible manipulators arms: status and trends. NASA Conference on Space Telerobotics, vol. 3, pp. 11-24.
  4. Boyd, S., Barratt, C., 1991. Linear controller design. Limits of performance, Prentice Hall.
  5. Boyd, S., Ghaoui, L. El., Feron, E., Balakrishnan, V., 1994. Linear matrix inequalities in system and control theory, SIAM Publications, Philadelphia.
  6. Camacho, E. F., Bordons, C., 2004. Model predictive control, Springer-Verlag. London, 2nd edition.
  7. Clement, B., Duc, G., 2000. A multiobjective control via Youla parameterization and LMI optimization: application to a flexible arm, IFAC Symposium on Robust Control and Design, Prague.
  8. Doyle, J. C., Stein, G., 1979. Robustness with observers. In IEEE Trans. Automatic Control, vol. AC 24, pp. 607-611.
  9. Halalchi, H., Bara, G. I., Laroche E., 2010. LPV controller design for robot manipulators based on augmented LMI conditions with structural constraints, IFAC Symposium on System, Structure and Control, Ancona, Italy.
  10. Hedjar R., Toumi, R., Boucher, P., Dumur, D., 2002. Feedback nonlinear predictive control of rigid link robot manipulators, IEEE ACC, Anchorage, AK, USA, pp. 3594-3599.
  11. Kucera, V., 1974. Closed loop stability of discrete linear single variable systems, Kybernetika, vol. 10(2), pp. 146-171.
  12. Maalouf, A.I., 2006. Improving the robustness of a parallel robot using Predictive Functional Control (PFC) tools, 45th IEEE CDC, San Diego, CA, USA pp. 6468-6473.
  13. Maciejowski, J. M., 2001. Predictive control with constrains, Prentice Hall.
  14. Maciejowski, J. M., 1989. Multivariable feedback design, Addison-Wesley Publishing Company, Wokingham.
  15. Merabet, A, Gu, J., 2009. Generalized predictive control for single-link flexible joint robot, International Journal on Sciences and Techniques of Automatic Control, vol. 3, no. 1, pp. 890-899.
  16. Moreno-Valenzuela, J., Santibáñez, V., Campa, R., 2008. On output feedback tracking control of robot manipulators with bounded torque input, International Journal of Control, Automation, and Systems, vol. 6, no. 1, pp. 76-85.
  17. Sciavicco, L., Siciliano, B., 1996. Modelling and control of robot. McGraw-Hill Company, Inc., New York.
  18. Scherer, C. W., 2000. An efficient solution to multiobjective control problem with LMI objectives. Systems and Control Letters, 40, pp 43-57.
  19. Spong, M. W., Hutchinson, S., Vidyasagar, M., 2005. Robot modeling and control, John Wiley Sons Inc., 2005.
  20. Spong, M. W., 1992. On the robust control of robot manipulators, IEEE Transactions on Automatic Control, vol. 37, pp. 1782-1786.
  21. Stoica, C., Rodríguez-Ayerbe, P., Dumur, D. 2007. Improved robustness of multivariable Model Predictive Control under model uncertainties, 4th ICINCO, Angers, France, pp. 283-288.
  22. Stoica, C., Al Assad, O., Rodriguez-Ayerbe, P., Godoy, E. Dumur, D., 2009. Control of a flexible arm by means of robustified MPC, European Control Conference, Budapest, Hungary, pp. 2229-2234.
  23. Tomei, P., 1994. Tracking control of flexible joint robots with uncertain parameters and disturbances, IEEE Transactions on Automatic Control, vol. 39, no. 5, pp. 1067-1072.
  24. Youla, D. C., Jabr, H. A., Bongiorno Jr., J.J., 1976. Modern Wiener-Hopf design of optimal controllers - part II : the multivariable case, IEEE Transactions on Automatic Control, vol. 21(3), pp. 319-338.
Download


Paper Citation


in Harvard Style

Dogaru E., Stoica C. and Godoy E. (2011). ROBUSTIFIED CONTROL OF A MULTIVARIABLE ROBOT . In Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-8425-74-4, pages 290-299. DOI: 10.5220/0003534002900299


in Bibtex Style

@conference{icinco11,
author={Emanuel Dogaru and Cristina Stoica and Emmanuel Godoy},
title={ROBUSTIFIED CONTROL OF A MULTIVARIABLE ROBOT},
booktitle={Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2011},
pages={290-299},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003534002900299},
isbn={978-989-8425-74-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - ROBUSTIFIED CONTROL OF A MULTIVARIABLE ROBOT
SN - 978-989-8425-74-4
AU - Dogaru E.
AU - Stoica C.
AU - Godoy E.
PY - 2011
SP - 290
EP - 299
DO - 10.5220/0003534002900299