COMPUTATIONAL EXPERIENCE WITH STRUCTURE-PRESERVING HAMILTONIAN SOLVERS IN OPTIMAL CONTROL

Vasile Sima

Abstract

Structure-preserving techniques for solving essential computational problems in optimal control are presented. The techniques use possibly extended skew-Hamiltonian/Hamiltonian matrix pencils, and specialized algorithms to exploit their structure: the symplectic URV decomposition, periodic QZ algorithm, solution of periodic Sylvester-like equations, etc. The structure-preserving approach has the potential to avoid the numerical difficulties which are encountered for a traditional, non-structured solution, returned by the currently available software tools. Preliminary computational results are presented.

References

  1. Abels, J. and Benner, P. (1999). CAREX-A collection of benchmark examples for continuous-time algebraic Riccati equations (Version 2.0). SLICOT Working Note 1999-14. http://www.slicot.org/.
  2. Bender, D. J. and Laub, A. J. (1987a). The linear-quadratic optimal regulator for descriptor systems. IEEE Trans. Automat. Contr., AC-32(8):672-688.
  3. Bender, D. J. and Laub, A. J. (1987b). The linear-quadratic optimal regulator for descriptor systems: Discretetime case. Automatica, 23(1):71-85.
  4. Benner, P., Byers, R., Losse, P., Mehrmann, V., and Xu, H. (2007). Numerical solution of real skewHamiltonian/Hamiltonian eigenproblems. Technical report, Technische Universität Chemnitz, Chemnitz.
  5. Benner, P., Byers, R., Mehrmann, V., and Xu, H. (2002). Numerical computation of deflating subspaces of skew Hamiltonian/Hamiltonian pencils. SIAM J. Matrix Anal. Appl., 24(1):165-190.
  6. Benner, P., Kressner, D., Sima, V., and Varga, A. (2010). Die SLICOT-Toolboxen für Matlab. atAutomatisierungstechnik, 58(1):15-25.
  7. Benner, P., Mehrmann, V., Sima, V., Van Huffel, S., and Varga, A. (1999). SLICOT - A subroutine library in systems and control theory. In Applied and Computational Control, Signals, and Circuits, vol. 1, ch. 10, 499-539. Birkhäuser, Boston.
  8. Bojanczyk, A. W., Golub, G., and Van Dooren, P. (1992). The periodic Schur decomposition: algorithms and applications. In Proc. of the SPIE Conference, vol. 1770, 31-42.
  9. Boyd, S., Balakrishnan, V., and Kabamba, P. (1989). A bisection method for computing the H¥ norm of a transfer matrix and related problems. Mathematics of Control, Signals, and Systems, 2(3):207-219.
  10. Bruinsma, N. A. and Steinbuch, M. (1990). A fast algorithm to compute the H¥ -norm of a transfer function. Systems & Control Letters, 14:287-293.
  11. Lancaster, P. and Rodman, L. (1995). The Algebraic Riccati Equation. Oxford University Press, Oxford.
  12. Laub, A. J. (1979). A Schur method for solving algebraic Riccati equations. IEEE Trans. Automat. Contr., AC24(6):913-921.
  13. MATLAB (2010). The MATLAB Control System Toolbox. Version 9.0.
  14. Mehrmann, V. (1991). The Autonomous Linear Quadratic Control Problem. Theory and Numerical Solution, volume 163 of Lect. Notes in Control and Information Sciences. Springer-Verlag, Berlin.
  15. Pappas, T., Laub, A. J., and Sandell, N. R. (1980). On the numerical solution of the discrete-time algebraic Riccati equation. IEEE Trans. Automat. Contr., AC25(4):631-641.
  16. Sima, V. (1996). Algorithms for Linear-Quadratic Optimization. Marcel Dekker, Inc., New York.
  17. Sima, V. (2006). Efficient algorithm for L¥ -norm calculations. In 5th IFAC Symposium on Robust Control Design, July 5-7, 2006, Toulouse, France.
  18. Sima, V. (2010). Structure-preserving computation of stable deflating subspaces. In Proceedings of the 10th IFAC Workshop “Adaptation and Learning in Control and Signal Processing”, Antalya, Turkey, 26-28 August 2010 - Kudret Press & Digital Printing Co.
  19. Sreedhar, J. and Van Dooren, P. (1994). Periodic Schur form and some matrix equations. In Proc. of the Symposium on the Mathematical Theory of Networks and Systems, vol. 1, 339-362, Regensburg, Germany.
  20. Van Dooren, P. (1981). A generalized eigenvalue approach for solving Riccati equations. SIAM J. Sci. Stat. Comput., 2(2):121-135.
  21. Xu, H. (2006). On equivalence of pencils from discrete-time and continuous-time control. Lin. Alg. Appl., 414:97- 124.
Download


Paper Citation


in Harvard Style

Sima V. (2011). COMPUTATIONAL EXPERIENCE WITH STRUCTURE-PRESERVING HAMILTONIAN SOLVERS IN OPTIMAL CONTROL . In Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-8425-74-4, pages 91-96. DOI: 10.5220/0003534100910096


in Bibtex Style

@conference{icinco11,
author={Vasile Sima},
title={COMPUTATIONAL EXPERIENCE WITH STRUCTURE-PRESERVING HAMILTONIAN SOLVERS IN OPTIMAL CONTROL},
booktitle={Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2011},
pages={91-96},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003534100910096},
isbn={978-989-8425-74-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - COMPUTATIONAL EXPERIENCE WITH STRUCTURE-PRESERVING HAMILTONIAN SOLVERS IN OPTIMAL CONTROL
SN - 978-989-8425-74-4
AU - Sima V.
PY - 2011
SP - 91
EP - 96
DO - 10.5220/0003534100910096