Radu-Emil Precup, Florin-Cristian Enache, Mircea-Bogdan Rădac, Emil M. Petriu, Claudia-Adina Dragoş, Stefan Preitl


This paper deals with the application of an Iterative Learning Control (ILC) structure to the position control of a 3D crane system in the crane position control problem. The control system structure involves Cascade Learning (CL) built around control a loop with a frequency domain designed lead-lag controller. The parameters of the continuous-time real PD learning rule as lead-lag controller are set such that to fulfil the convergence condition of the CL process. A set of real-time experimental results concerning a 3D crane system laboratory equipment is offered to validate the new CL-based ILC structure.


  1. Ahn, H.-S., Moore, K. L., Chen, Y., 2007. Iterative Learning Control. Robustness and Monotonic Convergence for Interval Systems. Berlin, Heidelberg, New York: Springer-Verlag.
  2. Bellomo, D., Naso, D., Babuška, R., 2008. Adaptive fuzzy control of a non-linear servo-drive: theory and experimental results. Engineering Applications of Artificial Intelligence. 21, 846-857.
  3. Bernard, A., Tichkiewitch, S. (Eds.), 2008. Methods and Tools for Effective Knowledge Life-CycleManagement. Berlin, Heidelberg, New York: Springer-Verlag.
  4. Bristow, D. A., Tharayil, M., Alleyne, A. G., 2006. A survey of iterative learning control. IEEE Control Systems Magazine. 26, 96-114.
  5. Chang, C.-Y., Chiang, K.-H., 2008. The nonlinear 3-D crane control with an intelligent operating method. In Proceedings of 2008 SICE Annual Conference. Tokyo, Japan, 2917-2921.
  6. Chen, W., Wu, Q., Tafazzoli, E., Saif, M., 2008. Actuator fault diagnosis using high-order sliding mode differentiator (HOSMD) and its application to a laboratory 3D crane. In Proceedings of 17th World Congress of the International Federation of Automatic Control. Seoul, Korea, 4809-4814.
  7. Chwa, D., 2009. Nonlinear tracking control of 3-D overhead cranes against the initial swing angle and the variation of payload weight. IEEE Transactions on Control Systems Technology. 17, 876-883.
  8. Cottenceau, B., Hardouin, L., Boimond, J.-L., Ferrier, J.- L., 2001. Model reference control for timed event graphs in dioids. Automatica. 37, 1451-1458.
  9. Cuenca, Á., Salt, J., Sala, A., Piza, R., 2011. A delaydependent dual-Rate PID controller over an Ethernet network. IEEE Transactions on Industrial Informatics. 7, 18-29.
  10. Derr, K., Manic, M., 2008. Wireless based object tracking based on neural networks. In Proceedings of 3rd IEEE Conference on Industrial Electronics and Applications (ICIEA 2008). Singapore, 308-313.
  11. Enache, F.-C., 2010. Iterative learning control-based control solutions. Applications to a 3D crane laboratory equipment. B.Sc. Thesis, Department of Automation and Applied Informatics, “Politehnica” University of Timisoara, Timisoara, Romania.
  12. Horváth, L., Rudas, I. J., 2004. Modeling and Problem Solving Methods for Engineers. Burlington, MA: Academic Press, Elsevier.
  13. Inteco Ltd, 2008. 3D Crane, User's Manual. Krakow, Poland: Inteco Ltd.
  14. Johanyák, Z. C., Tikk, S., Kovács, S., Wong, K. K., 2006. Fuzzy rule interpolation Matlab toolbox - FRI toolbox. In Proceedings of 15th International Conference on Fuzzy Systems (FUZZ-IEEE'06). Vancouver, BC, Canada, 1427-1433.
  15. Kaneshige, A., Miyoshi, T., Terashima, K., 2009. The development of an autonomous mobile overhead crane system for the liquid tank transfer. In Proceedings of 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2009). Singapore, 630-635.
  16. Pisano, A., Scodina, S., Usai, E., 2010. Load swing suppression in the 3-dimensional overhead crane via second-order sliding-modes. In Proceedings of 11th International Workshop on Variable Structure Systems (VSS 2010). Mexico City, Mexico, 452-457.
  17. Škrjanc, Blažic S., Agamennoni, O. E., 2005. Identification of dynamical systems with a robust interval fuzzy model. Automatica. 41, 327-332.
  18. Vašcák, J., 2009. Using neural gas networks in traffic navigation. Acta Technica Jaurinensis, Series Intelligentia Computatorica. 2, 203-215.
  19. Westerberg, S., Manchester, I. R., Mettin, U., La Hera, P., Shiriaev, A., 2008. Virtual environment teleoperation of a hydraulic forestry crane. In Proceedings of 2008 IEEE International Conference on Robotics and Automation (ICRA 2008). Pasadena, CA, USA, 4049- 4054.
  20. Xu, J.-X., Panda, S. K., Lee, T. H., 2009. Real-time Iterative Learning Control. Design and Applications. Berlin, Heidelberg, New York: Springer-Verlag.
  21. Yoshida, Y. Tabata, H., 2008. Visual feedback control of an overhead crane and its combination with timeoptimal control. In Proceedings of 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2008). Xi'an, China, 1114-1119.

Paper Citation

in Harvard Style

Precup R., Enache F., Rădac M., Petriu E., Dragoş C. and Preitl S. (2011). ITERATIVE LEARNING CONTROL APPLICATION TO A 3D CRANE SYSTEM . In Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-8425-74-4, pages 117-122. DOI: 10.5220/0003537301170122

in Bibtex Style

author={Radu-Emil Precup and Florin-Cristian Enache and Mircea-Bogdan Rădac and Emil M. Petriu and Claudia-Adina Dragoş and Stefan Preitl},
booktitle={Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},

in EndNote Style

JO - Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
SN - 978-989-8425-74-4
AU - Precup R.
AU - Enache F.
AU - Rădac M.
AU - Petriu E.
AU - Dragoş C.
AU - Preitl S.
PY - 2011
SP - 117
EP - 122
DO - 10.5220/0003537301170122