A NEW PROPOSAL FOR A MULTI-OBJECTIVE TECHNIQUE USING TRIBES AND SIMULATED ANNEALING

Nadia Smairi, Sadok Bouamama, Khaled Ghedira, Patrick Siarry

Abstract

This paper proposes a new hybrid multi-objective particle swarm optimizer which incorporates a particle swarm optimization approach (Tribes) and Simulated Annealing (SA). The main idea of the approach is to propose a skilled combination of Tribes with a local search technique based on Simulated Annealing technique. Besides, we are studying the impact of the place where we apply local search on the performance of the obtained algorithm which leads us to three different versions: applying SA on the archive’s particles, applying SA only on the best particle among each tribe and applying SA on each particle of the swarm. In order to validate our approach, we use ten well-known test functions proposed in the specialized literature of multi-objective optimization. The obtained results show that using this kind of hybridization is justified as it is able to improve the quality of the solutions in the majority of cases.

References

  1. Bergh, F. (2002). An Analysis of Particle Swarm Optimizers. PhD thesis, Departement of Computer Science, University of Pretoria, Pretoria, South Africa.
  2. Carlos, A. and Coello, C.A.C. (2000, June). An Updated Survey of GA-Based Multiobjective Optimization Techniques. ACM Computing Surveys, Vol. 32, No. 2.
  3. Chelouah, R. and Siarry, P. (2000). Tabu Search applied to global optimization. European Journal of Operational Research 123, 256-270.
  4. Clerc, M. (2006). Particle Swarm Optimization. International Scientific and Technical Encyclopaedia, John Wiley & sons.
  5. Cooren, Y. (2008). Perfectionnement d'un algorithme adaptatif d'optimisation par essaim particulaire. Applications en génie médicale et en électronique. PhD thesis, Université Paris 12.
  6. Hu, X., Eberhart, R. and Shi, Y. (2003). Particle swarm with Extended Memory for multi-objective Optimization. In IEEE Swarm Intelligence Symposium.
  7. Kirkpatrick, S., Gellat, D.C. and Vecchi, M.P. (1983). Optimization by simulated annealing. Science, 220: 671-680.
  8. Knowles, J., Thiele, L. and Zitler, E. (2006, February). A tutorial on the Performance Assessement of Stochastic Multi-objective Optimizers. Tik-Report No-214, Computer Engineering and Networks Laboratory, ETH Zurich, Switzerland.
  9. Zielinski, K. and Laur, R. (2007). Adaptive Parameter Setting for a Multi-Objective Particle Swarm Optimization Algorithm. Proceedings of the 2007 IEEE Congress on Evolutionary Computation, IEEE Press, 3019 - 3026.
  10. Zitzler, E. and Deb, K. (2007, July). Tutorial on Evolutionary Multiobjective Optimization. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO'07), London, United Kingdom.
Download


Paper Citation


in Harvard Style

Smairi N., Bouamama S., Ghedira K. and Siarry P. (2011). A NEW PROPOSAL FOR A MULTI-OBJECTIVE TECHNIQUE USING TRIBES AND SIMULATED ANNEALING . In Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-8425-74-4, pages 130-135. DOI: 10.5220/0003538301300135


in Bibtex Style

@conference{icinco11,
author={Nadia Smairi and Sadok Bouamama and Khaled Ghedira and Patrick Siarry},
title={A NEW PROPOSAL FOR A MULTI-OBJECTIVE TECHNIQUE USING TRIBES AND SIMULATED ANNEALING },
booktitle={Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2011},
pages={130-135},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003538301300135},
isbn={978-989-8425-74-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - A NEW PROPOSAL FOR A MULTI-OBJECTIVE TECHNIQUE USING TRIBES AND SIMULATED ANNEALING
SN - 978-989-8425-74-4
AU - Smairi N.
AU - Bouamama S.
AU - Ghedira K.
AU - Siarry P.
PY - 2011
SP - 130
EP - 135
DO - 10.5220/0003538301300135