PRINCIPAL COMPONENTS ANALYSIS METHOD APPLICATION IN ELECTRICAL MACHINES DIAGNOSIS

J. F. Ramahaleomiarantsoa, N. Heraud, E. J. R. Sambatra, J. M. Razafimahenina

Abstract

Electrical machines are found in many applications, especially in wind energy conversion chain (WECC). However, these machines still remain the most potential of failures. Many researches and improvements have been carried out but in the aim of optimal operation systems, monitoring and diagnosis techniques are among the interests of existing laboratories and research teams. This paper deals with the principal components analysis (PCA) method application in electrical machines, especially a wound rotor induction machine (WRIM), diagnosis. The used PCA approach is based on residues analysis. To perform the matrix data needed for PCA method data input, an accurate analytical method of the WRIM is proposed. WRIM and PCA models are implemented in Matlab software. The simulation results show the potential necessity of the considered PCA method on the WRIM faults detection compared to some other signal analysis method.

References

  1. Wieczorek, M., Rosolowski, E., 2010. Modelling of induction motor for simulation of internal faults, Modern Electric Power Systems 2010, Wroclaw, Poland MEPS'10 - paper P29.
  2. Razik, H., 2002. Le contenu spectral du courant absorbé par la machine asynchrone en cas de défaillance, un état de l'art, La revue 3EI, n°29, pp. 48 - 52.
  3. Chia-Chou, Y. & al., 2008. A Reconfigurable Motor for Experimental Emulation of Stator Winding Interturn and Broken Bar Faults in Polyphase Induction Machines, IEEE transactions on energy conversion, vol.23, n°4, pp. 1005-1014.
  4. Sin, M. L., Soong, W. L., Ertugrul, N., 2003. Induction machine on-line condition monitoring and fault diagnosis - a survey, University of Adelaide.
  5. Negrea, M. D., 2006. Electromagnetic flux monitoring for detecting faults in electrical machines, PhD, Helsinki University of Technology, Department of Electrical and Communications Engineering, Laboratory of Electromechanics, TKK Dissertations 51, Espoo Finland.
  6. Kliman, G. B., Premerlani, W. J., Koegl, R. A., Hoeweler D., 1996. A new approach to on -line fault detection in AC motors, San Diego, in Proc. IEEE Industry Applications Society Annual Meeting Conference, CA, pp. 687-693.
  7. Liu, L., 2006. Robust fault detection and diagnosis for permanent magnet synchronous motors, PhD dissertation, College of Engineering, The Florida State University, USA.
  8. Marx, B., Mourot, G., Maquin, D., Ragot, J., 2007. Validation et réconciliation de données. Approche conventionnelle, difficultés et développements, Workshop Interdisciplinaire sur la Sécurité Globale, WISG'07, Troyes, France.
  9. Ku, W., Storer, R. H., Georgakis, C., 1995. Disturbance detection and isolation by dynamic principal component analysis. Chemometrics and Intelligent Laboratory Systems, 30, pp. 179-196.
  10. Huang, B., 2001. Process identification based on last principal component analysis, Journal of Process Control, 11, pp.19-33.
  11. Li, W., Qin, S. J., 2001. Consistent dynamic pca based on errors-in-variables Subspace identification, Journal of Process Control, 11(6), pp. 661-678.
  12. Benaicha, A., Mourot, G., Guerfel, M., Benothman, K., Ragot, J., 2010. A new method for determining PCA models for system diagnosis, 18th Mediterranean Conference on Control & Automation Congress Palace Hotel, Marrakech, Morocco June 23-25, pp. 862-867.
  13. Valle, S., Weihua, L., Qin, S. J., 1999. Selection of the number of principal components: The variance of the reconstruction error criterion with a comparison to other methods, Industrial and Engineering Chemistry Research, vol. 38, pp. 4389-4401.
  14. Harkat, M. F., Mourot, G., Ragot, J., 2005. An improved PCA scheme for sensor FDI: Application to an air quality monitoring network, Preprint submitted to Elsevier Science.
Download


Paper Citation


in Harvard Style

F. Ramahaleomiarantsoa J., Heraud N., J. R. Sambatra E. and M. Razafimahenina J. (2011). PRINCIPAL COMPONENTS ANALYSIS METHOD APPLICATION IN ELECTRICAL MACHINES DIAGNOSIS . In Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-8425-74-4, pages 167-175. DOI: 10.5220/0003542501670175


in Bibtex Style

@conference{icinco11,
author={J. F. Ramahaleomiarantsoa and N. Heraud and E. J. R. Sambatra and J. M. Razafimahenina},
title={PRINCIPAL COMPONENTS ANALYSIS METHOD APPLICATION IN ELECTRICAL MACHINES DIAGNOSIS},
booktitle={Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2011},
pages={167-175},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003542501670175},
isbn={978-989-8425-74-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - PRINCIPAL COMPONENTS ANALYSIS METHOD APPLICATION IN ELECTRICAL MACHINES DIAGNOSIS
SN - 978-989-8425-74-4
AU - F. Ramahaleomiarantsoa J.
AU - Heraud N.
AU - J. R. Sambatra E.
AU - M. Razafimahenina J.
PY - 2011
SP - 167
EP - 175
DO - 10.5220/0003542501670175