Pekka Abrahamsson, Ilenia Fronza, Jelena Vlasenko


Crashes of software systems may have disruptive, and sometimes tragic effects on users. Being able to forecast such failures is extremely important, even when the failures are inevitable – at least recovery or rescue actions can be taken. In this paper we present a technique to predict the failure of running software systems. We propose to use log messages to predict failures running devices that read log files of running application and warns about the likely failure of the system; the prediction is based on the Cox Proportional Hazards (PH) model that has been applied successfully in various fields of research. We perform an initial validation of the proposed approach on real-world data.


  1. Agerbo, E. 2007. High income, employment, postgraduate education, and marriage : a suicidal cocktail among psychiatric patients. Archives of General Psychiatry, 64, 12, 2007, 1377-1384.
  2. Barros, C. P. and Machado, L. P. 2010. The length of stay in tourism. Annals of Tourism Research, 37, 3, 2010, 692-706.
  3. Benda, B. 2005. Gender differences in life-course theory of recidivism: A survival analysis. International Journal of Offender Therapy and Comparative Criminology, 49, 3, 2005, 325-342.
  4. Bøvelstad, H. M., Nygård, S., Størvold, H. L., Aldrin, M., Borgan, Ø., Frigessi, A., and Lingjaerde, O. C. 2007. Predicting survival from microarray data a comparative study. Bioinformatics, 23, 16, 2080- 2087.
  5. Bøvelstad, H. M. 2010. Survival Prediction from HighDimensional Genomic Data. Doctoral Thesis. University of Oslo.
  6. Chen, Y., Zhang, H., and Zhu, P. 2009. Study of Customer Lifetime Value Model Based on Survival-Analysis Methods. In Proceedings of the World Congress on Computer Science and Information Engineering (Los Angeles, USA, March 31 - April 02, 2009), 266-270.
  7. Coman I. And Sillitti A. 2007. An Empirical Exploratory Study on Inferring Developers' Activities from LowLevel Data. In SEKE'07, International Conference on Software Engineering and Knowledge Engineering.
  8. Coman, I. D., Sillitti, A., and Succi, G. 2009. A case-study on using an Automated In-process Software Engineering Measurement and Analysis system in an industrial environment. In ICSE'09, International Conference on Software Engineering, pp. 89 - 99.
  9. Cox, D. R. 1972. Regression models and life-tables. Journal of the Royal Statistical Society Series B, 34, 1972, 187-220.
  10. Hao, K., Luk, J. M., Lee, N. P. Y., Mao, M., Zhang, C., Ferguson, M. D., Lamb, J., Dai, H., Ng, I. O., Sham, P. C., and Poon, R. T. P. 2009. Predicting prognosis in hepatocellular carcinoma after curative surgery with common clinicopathologic parameters. BMC Cancer, 9, 2009, 398-400.
  11. Hosmer, D. W., Lemeshow, S., and May, S. 2008. Applied survival analysis: Regression modeling of time to event data. Wiley, 2nd edition.
  12. Kalbfleisch, J. D. and Prentice, R. L. 2002. The statistical analysis of failure time data. Wiley, 2nd edition.
  13. Kleinbaum, D. G. and Klein, M. 2005. Survival analysis: a self-learning test (Statistics for Biology and Health). Springer, 2nd edition.
  14. Lee E. T. and Wang, J. W. 2003. Statistical methods for survival data analysis. Wiley, 3rd edition.
  15. Li, Z., Zhou, S., Choubey, S., and Sievenpiper, C. 2007. Failure event prediction using the Cox proportional hazard model driven by frequent failure sequences. IEE Transactions, 39, 3, 2007, 303-315.
  16. Mannila, H., Toinoven, H., and Verkamo, A. I. 1997. Discovery of frequent episodes in event sequences. Data Mining and Knowledge Discovery, 1, 1997, 259 - 289.
  17. Moser R., Sillitti A., Abrahamsson P., and Succi G. 2006. Does refactoring improve reusability? In Proceedings of the International Conference on Software Reuse, 287-297.
  18. Müller, H. A., Kienle, H. M., Stege, U. 2009 Autonomic Computing: Now You See It, Now You Don'tDesign and Evolution of Autonomic Software Systems. In: De Lucia, A., Ferrucci, F. (eds.): Software Engineering International Summer School Lectures: University of Salerno, LNCS 5413, Springer-Verlag, 32-54.
  19. Pandalai, D. N. and Holloway, L. E. 2000. Template languages for fault monitoring of timed discrete event processes. IEEE Transactions on Automatic Control, 45, 5, 2000, 868 - 882.
  20. Sampath, M., Sengupta, R., and Lafortune, S. 1994. Diagnosability of discrete event systems. In Proceeding of the 11th international conference on Analysis and Optimization of Systems Discrete Event Systems (Sophia, Antipolis, June 15 - 17, 1994), 73 - 79.
  21. Schmidt, P. and Witte, A. D. 1989. Predicting Criminal Recidivism Using “Split Population” Survival Time Models. Journal of Econometrics, 40, 1, 1989, 141- 159.
  22. Scotto M., Sillitti A., Succi G., Vernazza T. 2004. A Relational Approach to Software Metrics. In Proceedings of the Symposium on Applied Computing, pp. 1536-1540, 2004.
  23. Scotto M., Sillitti A., Succi G., Vernazza T. 2006. A NonInvasive Approach to Product Metrics Collection. Journal of Systems Architecture, 52, 11, pp. 668 - 675.
  24. Sherkat, D. E. and Ellison, C.G. 2007. Structuring the Religion- Environment Connection: Religious Influences on Environmental Concern and Activism. Journal for the Scientific Study of Religion, 46, 2007, 71-85.
  25. Sillitti, A., Janes, A., Succi, G., and Vernazza, T. 2003. Collecting, Integrating and Analyzing Software Metrics and Personal Software Process Data. In EUROMICRO, pp. 336 - 342.
  26. Sillitti A., Janes A., Succi G., Vernazza T. 2004. Measures for Mobile Users: an Architecture. Journal of Systems Architecture, 50, 7, pp. 393 - 405.
  27. Sillitti A., Succi G. 2005. Requirements Engineering for Agile Methods. In Engineering and Managing Software Requirements, Springer.
  28. Srinivasan, V. S. and Jafari, M. A. 1993. Fault detection/monitoring using time petri nets. IEEE Transactions on System, Man and Cybernetics, 23, 4, 1993, 1155 - 1162.
  29. Wendel, M., Jensen, U., and Göhner, P. 2008. Mining software code repositories and bug databases using survival analysis models. In Proceedings of the 2nd ACM-IEEE international symposium on Empirical software engineering and measurement (Kaiserslautern, Germany, October 09 - 10, 2008), 282-284.
  30. Yanaihara, N., Caplen, N., Bowman, E., Seike, M., Kumamoto, K., Yi, M., Stephens, R. M., Okamoto, A., Yokota, J., Tanaka, T., Calin, G. A., Liu, C. G., Croce, C. M., and Harris C. C. 2006. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell, 9, 3, 2006, 189-198.
  31. Yu, S. L., Chen, H. Y., Chang G. C., Chen, C. Y., Chen, H. W., Singh, S., Cheng, C. L., Yu, C. J., Lee, Y. C., Chen, H. S., Su, T. J., Chiang, C. C., Li, H. N., Hong, Q. S., Su, H. Y., Chen, C. C., Chen, W. j., Liu, C. C., Chan, W. K., Chen, W. J., Li, K. C., Chen, J. J. W., and Yang, P. C. 2008. MicroRNA Signature Predicts Survival and Relapse in Lung Cancer. Cancer Cell, 13, 1, 2008, 48-57.
  32. Zheng, Z., Lan, Z., Park, B. H., and Geist, A. 2009. System log pre-processing to improve failure prediction. In Proceedings of the 39th Annual IEEE/IFIP International Conference on Dependable Systems & Networks (Lisbon, Portugal, June 29 - July 2), 572-577.

Paper Citation

in Harvard Style

Abrahamsson P., Fronza I. and Vlasenko J. (2011). FAILURE PREDICTION USING THE COX PROPORTIONAL HAZARD MODEL . In Proceedings of the 6th International Conference on Software and Database Technologies - Volume 2: ICSOFT, ISBN 978-989-8425-77-5, pages 201-206. DOI: 10.5220/0003557802010206

in Bibtex Style

author={Pekka Abrahamsson and Ilenia Fronza and Jelena Vlasenko},
booktitle={Proceedings of the 6th International Conference on Software and Database Technologies - Volume 2: ICSOFT,},

in EndNote Style

JO - Proceedings of the 6th International Conference on Software and Database Technologies - Volume 2: ICSOFT,
SN - 978-989-8425-77-5
AU - Abrahamsson P.
AU - Fronza I.
AU - Vlasenko J.
PY - 2011
SP - 201
EP - 206
DO - 10.5220/0003557802010206