A SPATIAL IMMERSIVE OFFICE ENVIRONMENT FOR COMPUTER-SUPPORTED COLLABORATIVE WORK - Moving Towards the Office of the Future

Maarten Dumont, Sammy Rogmans, Steven Maesen, Karel Frederix, Johannes Taelman, Philippe Bekaert

Abstract

In this paper, we present our work in building a prototype office environment for computer-supported collaborative work, that spatially – and auditorially – immerses the participants, as if the augmented and virtual generated environment was a true extension of the physical office. To realize this, we have integrated various hardware, computer vision and graphics technologies from either existing state-of-the-art, but mostly from knowledge and expertise in our research center. The fundamental components of such an office of the future, i.e. image-based modeling, rendering and spatial immersiveness, are illustrated together with surface computing and advanced audio processing, to go even beyond the original concept.

References

  1. Cruz-Neira, C., Sandin, D., and DeFanti, T. (1993). Virtual reality: The design and implementation of the cave. In ACM SIGGRAPH 93, pages 135-142.
  2. Cuypers, T., Frederix, K., Raymaekers, C., and Bekaert, P. (2009). A framework for networked interactive surfaces. In 2nd Workshop on Software Engineering and Architecture for Realtime Interactive Systems (SEARIS@VR2009).
  3. Dietz, P. and Leigh, D. (2001). Diamondtouch: A multiuser touch technology. In 14th Annual ACM Symposium on User Interface Software and Technology, Florida, FL, USA.
  4. Dumont, M., Maesen, S., Rogmans, S., and Bekaert, P. (2008). A prototype for practical eye-gaze corrected video chat on graphics hardware. In International Conference on Signal Processing and Multimedia Applications, Porto, Portugal.
  5. Dumont, M., Rogmans, S., Lafruit, G., and Bekaert, P. (2009a). Immersive teleconferencing with natural 3d stereoscopic eye contact using gpu computing. In 3D Stereo Media, Liege, Belgium.
  6. Dumont, M., Rogmans, S., Maesen, S., and Bekaert, P. (2009b). Optimized two-party video chat with restored eye contact using graphics hardware. CCIS, 48:358-372.
  7. Fiala, M. (2005). Automatic projector calibration using self-identifying patterns. Computer Vision and Pattern Recognition Workshop, 0:113.
  8. Goorts, P., Rogmans, S., and Bekaert, P. (2009). Optimal data distribution for versatile finite impulse response filtering on next-generation graphics hardware using cuda. In The Fifteenth International Conference on Parallel and Distributed Systems, pages 300-307, Shenzhen, China.
  9. Goorts, P., Rogmans, S., Eynde, S. V., and Bekaert, P. (2010). Practical examples of gpu computing optimization principles. In International Conference on Signal Processing and Multimedia Applications, Athens, Greece.
  10. Green, M. and Whites, L. (2000). The cave-let: a low-cost projective immersive display. Journal of Telemedicine and Telecare, 6(2):24-26.
  11. Griesser, A. and Gool, L. V. (2006). Automatic interactive calibration of multi-projector-camera systems. Computer Vision and Pattern Recognition Workshop, 0:8.
  12. Gross, M., W ürmlin, S., Naef, M., Lamboray, E., Spagno, C., Kunz, A., Koller-Meier, E., Svoboda, T., Van Gool, L., Lang, S., Strehlke, K., Moere, A. V., and Staadt, O. (2003). blue-c: a spatially immersive display and 3d video portal for telepresence. ACM Trans. Graph., 22:819-827.
  13. Harville, M., Culbertson, B., Sobel, I., Gelb, D., Fitzhugh, A., and Tanguay, D. (2006). Practical methods for geometric and photometric correction of tiled projector. In 2006 Conference on Computer Vision and Pattern Recognition Workshop, CVPRW 7806, pages 5-, Washington, DC, USA. IEEE Computer Society.
  14. Held, R. T., Cooper, E. A., O'Brien, J. F., and Banks, M. S. (2010). Using blur to affect perceived distance and size. ACM Trans. Graph., 29:19:1-19:16.
  15. Juarez, A., Schonenberg, B., and Bartneck, C. (2010). Implementing a low-cost cave system using the cryengine2. Entertainment Computing, 1(3-4):157- 164.
  16. Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E., and Phillips, J. C. (2008). Gpu computing. Proceedings of the IEEE, 96(5):879-899.
  17. Raskar, R., Brown, M. S., Yang, R., Chen, W.-C., Welch, G., Towles, H., Seales, B., and Fuchs, H. (1999). Multi-projector displays using camera-based registration. In Proceedings of 10th IEEE Visualization 1999 Conference (VIS 7899), VISUALIZATION 7899, Washington, DC, USA. IEEE Computer Society.
  18. Raskar, R., Welch, G., Cutts, M., Lake, A., Stesin, L., and Fuchs, H. (1998). The office of the future: a unified approach to image-based modeling and spatially immersive displays. In Proceedings of 25th annual conference on Computer graphics and interactive techniques, SIGGRAPH 7898, pages 179-188, New York, NY, USA. ACM.
  19. Rogmans, S., Bekaert, P., and Lafruit, G. (2009a). A high-level kernel transformation rule set for efficient caching on graphics hardware - increasing streaming execution performance with minimal design effort. In International Conference on Signal Processing and Multimedia Applications, Milan, Italy.
  20. Rogmans, S., Dumont, M., Cuypers, T., Lafruit, G., and Bekaert, P. (2009b). Complexity reduction of realtime depth scanning on graphics hardware. In VISAPP, pages 547-550, Lisbon, Portugal.
  21. Rogmans, S., Dumont, M., Lafruit, G., and Bekaert, P. (2009c). Migrating real-time image-based rendering from traditional to next-gen gpgpu. In 3DTV-CON: The True Vision Capture, Transmission and Display of 3D Video, Potsdam, Germany.
  22. Rogmans, S., Dumont, M., Lafruit, G., and Bekaert, P. (2010a). Biological-aware stereoscopic rendering in free viewpoint technology using gpu computing. In 3DTV-CON: The True Vision Capture, Transmission and Display of 3D Video, Tampere, Finland.
  23. Rogmans, S., Dumont, M., Lafruit, G., and Bekaert, P. (2010b). Immersive gpu-driven biological adaptive stereoscopic rendering. In 3D Stereo Media, Liege, Belgium.
  24. Sajadi, B. and Majumder, A. (2010). Auto-calibration of cylindrical multi-projector systems. In Virtual Reality Conference, Waltham, MA, USA.
  25. Wobbrock, J. O., Morris, M. R., and Wilson, A. D. (2009). User-defined gestures for surface computing. In 27th international Conference on Human Factors in Computing Systems, New York, NY, USA.
  26. Yang, R., Welch, G., and Bishop, G. (2002). Real-time consensus-based scene reconstruction using commodity graphics hardware. In PG 7802: Proceedings of the 10th Pacific Conference on Computer Graphics and Applications, page 225, Washington, DC, USA. IEEE Computer Society.
Download


Paper Citation


in Harvard Style

Dumont M., Rogmans S., Maesen S., Frederix K., Taelman J. and Bekaert P. (2011). A SPATIAL IMMERSIVE OFFICE ENVIRONMENT FOR COMPUTER-SUPPORTED COLLABORATIVE WORK - Moving Towards the Office of the Future . In Proceedings of the International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2011) ISBN 978-989-8425-72-0, pages 212-216. DOI: 10.5220/0003567702120216


in Bibtex Style

@conference{sigmap11,
author={Maarten Dumont and Sammy Rogmans and Steven Maesen and Karel Frederix and Johannes Taelman and Philippe Bekaert},
title={A SPATIAL IMMERSIVE OFFICE ENVIRONMENT FOR COMPUTER-SUPPORTED COLLABORATIVE WORK - Moving Towards the Office of the Future},
booktitle={Proceedings of the International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2011)},
year={2011},
pages={212-216},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003567702120216},
isbn={978-989-8425-72-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2011)
TI - A SPATIAL IMMERSIVE OFFICE ENVIRONMENT FOR COMPUTER-SUPPORTED COLLABORATIVE WORK - Moving Towards the Office of the Future
SN - 978-989-8425-72-0
AU - Dumont M.
AU - Rogmans S.
AU - Maesen S.
AU - Frederix K.
AU - Taelman J.
AU - Bekaert P.
PY - 2011
SP - 212
EP - 216
DO - 10.5220/0003567702120216