Hana Alouaoui, Sami Yassine Turki, Sami Faiz


This paper presents an approach for mining spatiotemporal association rules. The proposed method is based on the computation of neighborhood relationships between geographic objects during a time interval. This kind of information is extracted from spatiotemporal database by the means of special mining queries enriched by time management parameters. The resulting spatiotemporal predicates are then processed by classical data mining tools in order to generate spatiotemporal association rules.


  1. Agrawal, R., Srikant, R. 1994. Fast algorithms for mining association rules in large databases. Research Report RJ 9839, IBM Almaden Research Center, San Jose, California.
  2. Bogorny, V., 2006. Enhancing spatial association rule mining in geographical database. Thesis presented In partial fulfillment of the requirements for the degree of doctor in computer science, federal university of” Rio Grande du sul”, Porto Alegre.
  3. Bogorny, V., Bart, K., Luis, O., 2008. A Spatio-temporal Data Mining Query Language for Moving Object Trajectories. Technical Report TR-357. Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
  4. Boulicaut, J. F. and Masson, C., 2005, Data Mining Query Languages. In The Data Mining and Knowledge Discovery Handbook, O. Maimon and L. Rokach (Eds) (Springer), pp. 715{727.
  5. Chen, X., Zaniolo, C., 2000. SQLST: A Spatiotemporal Data Model and Query Language. International Conference on Conceptual Modeling.
  6. Chen, X., Petrounias, I., 1998, Language Support for Temporal Data Mining. In Proceedings of the Proceedings of the Second European Symposium on Principles of Data Mining and Knowledge Discovery (London, UK: Springer-Verlag), pp. 282{290.
  7. Dbminer Technology 2000.Inc. DBMiner Enterprise 2.0. Available at DBMiner Technology site. URL: http:// www.dbminer.com.
  8. Erlend, T., Mads, N., 2010. Representing topological relationships for spatiotemporal objects. In GEOINFORMATICA. (published with open access at Springerlink.com).
  9. Fayyad, U., Piatesky-Shapiro, G., Smyth, P., 1996. From Data Mining to Knowledge Discovery: An Overview. Advances in KDD and Data Mining, AAAI,
  10. Han, J., Koperski, K., Stefanovic, N., 1997. GeoMiner: A System Prototype for Spatial Data Mining. In ACMSIGMOD Int'l Conf. On Management of Data (SIGMOD'97), Tucson, Arizona.
  11. Han, J., Fu, Y., Wang, W., Koperski, K. and Zaiane, O., 1996, Dmql: A data mining query language for relational databases. In Proceedings of the SIGMOD'96 Workshop on Research Issues in DataMining and Knowledge Discovery, Montreal, Canada, pp. 27{33.
  12. Han, J., 1995, Mining Knowledge at Multiple Concept Levels. In Proceedings of the CIKM (ACM), pp. 19{24.
  13. Imielinski, T. and Virmani, A., 1999, MSQL: A Query Language for Database Mining. Data Mining and Knowledge Discovery, 3, 373{408.
  14. Koperski, K., 1999. A progressive refinement approach to spatial data mining. Doctorate Thesis. In Simon Fraser University.
  15. Koperski, K., Han, J., 1995. Discovery of spatial association rules in Geographic Information Databases. In proc.4th Int'Symp on large Databases (SSD'95), pp47-66, Portland.
  16. Manco, G., Baglioni, M., Giannotti, F., Kuijpers, B., Raffaet, A., Renso, C., 2008. Querying and Reasoning for Spatiotemporal Data Mining F. Giannotti and D. Pedreschi (eds.) Mobility, Data Mining and Privacy.c Springer-Verlag Berlin Heidelberg .
  17. Marcelino, P., and Robin, J., 2004. SKDQL, a structured language to specify knowledge discovery processes and queries. Lecture Notes in Artificial Intelligence 3171, Springer.
  18. Malerba, D., Appice, A. and Ceci, M., 2004, A Data Mining Query Language for Knowledge Discovery in a Geographical Information System. In Proceedings of the Database Support for Data Mining Applications, pp. 95{116.
  19. Meo, R., Psaila, G. and Ceri, S., 1996, A New SQL-like Operator for Mining Association Rules. In Proceedings of the VLDB, T.M. Vijayaraman, A.P. Buchmann, C. Mohan and N.L. Sarda (Eds) (Morgan Kaufmann), pp. 122{133
  20. Roshan, N., Asghar, A., 1996. The Management of SpatioTemporal Data in a National Geographic Information System. Springer.
  21. Turki, Y., Faïz, S., 2009. Apport des règles d'association spatiales pour l'alimentation automatique des bases de données géographiques. International journal of Geomatic. Hermès-Lavoisier editions, Paris, France, Vol. 19/ N°1/2009, pp.27-44.
  22. Wang, H. and Zaniolo, C., 2003, ATLaS: A Native Extension of SQL for Data Mining. In Proceedings of the SDM, D. Barbar_a and C. Kamath (Eds) (SIAM).
  23. Zeitouni, K., Yeh, L., 1999. Les bases de données spatiales et le data mining spatial. International journal of Geomatic, Vol 9, N° 4.

Paper Citation

in Harvard Style

Alouaoui H., Yassine Turki S. and Faiz S. (2011). QUERYING AND MINING SPATIOTEMPORAL ASSOCIATION RULES . In Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2011) ISBN 978-989-8425-79-9, pages 394-397. DOI: 10.5220/0003636304020405

in Bibtex Style

author={Hana Alouaoui and Sami Yassine Turki and Sami Faiz},
booktitle={Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2011)},

in EndNote Style

JO - Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2011)
SN - 978-989-8425-79-9
AU - Alouaoui H.
AU - Yassine Turki S.
AU - Faiz S.
PY - 2011
SP - 394
EP - 397
DO - 10.5220/0003636304020405