A MEMETIC ALGORITHM FOR A CONTINUOUS CASE OF THE BERTH ALLOCATION PROBLEM

Geraldo Regis Mauri, Larice Nogueira de Andrade, Luiz Antonio Nogueira Lorena

Abstract

This work presents a Memetic Algorithm heuristic to solve a continuous case of the Berth Allocation Problem (BAP). The BAP deals with programming and allocating ships to berthing areas along a quay. In general, the continuous case considers that ships have different lengths and can moor anywhere along the quay. However, we consider a quay divided in berths that have limited areas and different equipments to handle the ships. So, we must to assign the ships to berths and determine the berthing time and position for each ship. We treat the ships as rectangles to be placed into a space × time area avoiding overlaps and satisfying time window constraints. Our MA uses a Simulated Annealing (SA) as the local search mechanism, and SA is also applied in a stand alone way to solve the BAP. A two-phase heuristic is also presented to compute the berthing time and position for all of ships during MA and SA execution. Computational results are performed on a set of instances proposed in the literature and new best-known solutions are presented.

References

  1. Barros, V. H., Costa, T. S., Oliveira, A. C. M., and Lorena, L. A. N. (2011). Model and heuristic for berth allocation in tidal bulk ports with stock level constraints. Computers & Industrial Engineering, 60:606-613.
  2. Buhrkal, K., Zuglian, S., Ropke, S., Larsen, J., and Lusby, R. (2011). Models for the discrete berth allocation problem: a computational comparison. Transportation Research Part E: Logistics and Transportation Review, 47:461-473.
  3. Cordeau, J. F., Laporte, G., Legato, P., and Moccia, L. (2005). Models and tabu search heuristics for the berth allocation problem. Transportation Science, 39:526- 538.
  4. Dragovic, B., Park, N. K., and Radmilovic, Z. (2005). Simulation modelling of ship-berth link with priority service. Maritime Economics & Logistics, 7:316-335.
  5. Giallombardo, G., Moccia, L., Salani, M., and Vacca, I. (2010). Modeling and solving the tactical berth allocation problem. Transportation Research Part B, 44:232- 245.
  6. Hansen, P., Oguz, C., and Mladenovic, N. (2008). Variable neighborhood search for minimum cost berth allocation. European Journal of Operational Research, 191:636- 649.
  7. Imai, A., Nishimura, E., and Papadimitriou, S. (2001). The dynamic berth allocation problem for a container port. Transportation Research Part B: Methodological, 35:401-417.
  8. Imai, A., Nishimura, E., and Papadimitriou, S. (2003). Berth allocation with service priority. Transportation Research Part B: Methodological, 37:437-457.
  9. Imai, A., Sun, X., Nishimura, E., and Papadimitriou, S. (2005). Berth allocation in a container port: using a continuous location space approach. Transportation Research Part B, 39:199-221.
  10. Mauri, G. R., Oliveira, A. C. M., and Lorena, L. A. N. (2008a). Heurística baseada no simulated annealing aplicada ao problema de alocac¸a˜o de berc¸os. GEPROS - Gesta˜o da Produc¸a˜o, Operac¸ o˜es e Sistemas, 1:113-127.
  11. Mauri, G. R., Oliveira, A. C. M., and Lorena, L. A. N. (2008b). A hybrid column generation approach for the berth allocation problem. Lecture Notes in Computer Science, 4972:110-122.
  12. Moscato, P. (1999). Memetic algorithms: a short introduction. In Corne, D., Dorigo, M., Glover, F., Dasgupta, D., Moscato, P., Poli, R., and Price, K. V., editors, New ideas in optimization. 219-234.
  13. Moscato, P. and Norman, M. (1992). A memetic approach for the travelling salesman problem: implementation of a computational ecology for combinatorial optimization on message-passing systems. In Proceedings of the International Conference on Parallel Computing and Transportation Applications. 177-186.
  14. Nishimura, E., Imai, A., and Papadimitriou, S. (2001). Berth allocation planning in the public berth system by genetic algorithms. European Journal of Operational Research, 131:282-292.
  15. Pacheco, A. V. F., Ribeiro, G. M., and Mauri, G. R. (2010). A grasp with path-relinking for the workover rig scheduling problem. International Journal of Natural Computing Research, 1:1-14.
  16. Ribeiro, G. M., Mauri, G. R., and Lorena, L. A. N. (2011). A simple and robust simulated annealing algorithm for scheduling workover rigs on onshore oil fields. Computers & Industrial Engineering, 60:519-526.
  17. Steenken, D., Voss, S., and Stahlbock, R. (2004). Container terminal operation and operations research: a classification and literature review. OR Spectrum, 26:3-49.
  18. UNCTAD (2009). Review of maritime transport. United Nations conference on trade and development.
  19. Vis, I. F. A. and Koster, R. D. (2003). Transshipment of containers at a container terminal: an overview. European Journal of Operational Research, 147:1-16.
Download


Paper Citation


in Harvard Style

Regis Mauri G., Nogueira de Andrade L. and Antonio Nogueira Lorena L. (2011). A MEMETIC ALGORITHM FOR A CONTINUOUS CASE OF THE BERTH ALLOCATION PROBLEM . In Proceedings of the International Conference on Evolutionary Computation Theory and Applications - Volume 1: ECTA, (IJCCI 2011) ISBN 978-989-8425-83-6, pages 105-113. DOI: 10.5220/0003636601050113


in Bibtex Style

@conference{ecta11,
author={Geraldo Regis Mauri and Larice Nogueira de Andrade and Luiz Antonio Nogueira Lorena},
title={A MEMETIC ALGORITHM FOR A CONTINUOUS CASE OF THE BERTH ALLOCATION PROBLEM},
booktitle={Proceedings of the International Conference on Evolutionary Computation Theory and Applications - Volume 1: ECTA, (IJCCI 2011)},
year={2011},
pages={105-113},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003636601050113},
isbn={978-989-8425-83-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Evolutionary Computation Theory and Applications - Volume 1: ECTA, (IJCCI 2011)
TI - A MEMETIC ALGORITHM FOR A CONTINUOUS CASE OF THE BERTH ALLOCATION PROBLEM
SN - 978-989-8425-83-6
AU - Regis Mauri G.
AU - Nogueira de Andrade L.
AU - Antonio Nogueira Lorena L.
PY - 2011
SP - 105
EP - 113
DO - 10.5220/0003636601050113