NEURAL NETWORKS COMPUTING THE DUNGEAN SEMANTICS OF ARGUMENTATION

Yoshiaki Goto, Takeshi Hagiwara, Hajime Sawamura

Abstract

Argumentation is a leading principle foundationally and functionally for agent-oriented computing where reasoning accompanied by communication plays as essential role in agent interaction. In the work of (Makiguchi and Sawamura, 2007a) (Makiguchi and Sawamura, 2007b), they constructed a simple but versatile neural network for the grounded semantics (the least fixed point semantics) in the Dung’s abstract argumentation framework (Dung, 1995). This paper further develop its theory so that it can decide which argumentation semantics (admissible, stable, complete semantics) a given set of arguments falls into. In doing so, we construct a more simple but versatile neural network that can compute all extensions of the argumentation semantics. The result leads to a neural-symbolic system for argumentation.

References

  1. Besnard, P. and Doutre, S. (2004). Checking the acceptability of a set of arguments. In 10th International Workshop on Non-Monotonic Reasoning (NMR 2004, pages 59-64.
  2. Caminada, M. (2006). Semi-stable semantics. In Dunne, P. E. and Bench-Capon, T. J. M., editors, Computational models of argument: proceedings of COMMA 2006, volume 144 of Frontiers in Artificial Intelligence and Applications, pages 121-130. IOS Press.
  3. Caminada, M. (2008). A gentle introduction to argumentation semantics. http://icr.uni.lu/caminada/publications/Semantics Intr oduction.pdf.
  4. Chesn˜evar, C. I., Maguitman, G., and Loui, R. P. (2000). Logical models of argument. ACM Computing Surveys, 32:337-383.
  5. Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logics programming and n-person games. Artificial Intelligence, 77:321-357.
  6. Garcez, A. S. D., Gabbay, D. M., and Lamb, L. C. (2005). Value-based argumentation frameworks as neural-symbolic learning systems. Journal of Logic and Computation, 15(6):1041-1058.
  7. Garcez, A. S. D., Lamb, L. C., and Gabbay, D. M. (2009). Neural-symbolic cognitive reasoning. Springer.
  8. Gotou, Y. (2010). Neural networks calculating Dung's argumentation semantics. http://www.cs.ie.niigatau.ac.jp/Paper/Storage/graduation thesis gotou.pdf.
  9. Gotou, Y., Hagiwara, T., and Sawamura, H. (2011). Extracting argumentative dialogues from the neural network that computes the dungean argumentation semantics. In 7th International Workshop on NeuralSymbolic Learning and Reasoning (NeSy11). To be presented at NeSy11.
  10. Hölldobler, S. and Kalinke, Y. (1994). Toward a new massively parallel computational model for logic programming. In Proc. of the Workshop on Combining Symbolic and Connectionist Processing, ECAL 1994, pages 68-77.
  11. Jagota, A., Plate, T., Shastri, L., and Sun, R. (1999). Connectionist symbol processing: Dead or alive? Neural Computing Surveys, 2:1-40.
  12. Levine, D. and Aparicio, M. (1994). Neural networks for knowledge representation and inference. LEA.
  13. Makiguchi, W. and Sawamura, H. (2007a). A hybrid argumentation of symbolic and neural net argumentation (part i). In Argumentation in Multi-Agent Systems, 4th International Workshop, ArgMAS 2007, Revised Selected and Invited Papers, volume 4946 of Lecture Notes in Computer Science, pages 197-215. Springer.
  14. Makiguchi, W. and Sawamura, H. (2007b). A hybrid argumentation of symbolic and neural net argumentation (part ii). In Argumentation in Multi-Agent Systems, 4th International Workshop, ArgMAS 2007, Revised Selected and Invited Papers, volume 4946 of Lecture Notes in Computer Science, pages 216-233. Springer.
  15. Prakken, H. and Sartor, G. (1997). Argument-based extended logic programming with defeasible priorities. J. of Applied Non-Classical Logics, 7(1):25-75.
  16. Prakken, H. and Vreeswijk, G. (2002). Logical systems for defeasible argumentation. In In D. Gabbay and F. Guenther, editors, Handbook of Philosophical Logic, pages 219-318. Kluwer.
  17. Rahwan, I. and Simari, G. R. E. (2009). Argumentation in artificial intelligence. Springer.
  18. Takahashi, T. and Sawamura, H. (2004). A logic of multiple-valued argumentation. In Proceedings of the third international joint conference on Autonomous Agents and Multi Agent Systems (AAMAS'2004), pages 800-807. ACM.
  19. Vreeswijk, G. A. W. and Prakken, H. (2000). Credulous and sceptical argument games for preferred semantics. Lecture Notes in Computer Science, 1919:239-??
Download


Paper Citation


in Harvard Style

Goto Y., Hagiwara T. and Sawamura H. (2011). NEURAL NETWORKS COMPUTING THE DUNGEAN SEMANTICS OF ARGUMENTATION . In Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2011) ISBN 978-989-8425-84-3, pages 5-14. DOI: 10.5220/0003656600050014


in Bibtex Style

@conference{ncta11,
author={Yoshiaki Goto and Takeshi Hagiwara and Hajime Sawamura},
title={NEURAL NETWORKS COMPUTING THE DUNGEAN SEMANTICS OF ARGUMENTATION},
booktitle={Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2011)},
year={2011},
pages={5-14},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003656600050014},
isbn={978-989-8425-84-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2011)
TI - NEURAL NETWORKS COMPUTING THE DUNGEAN SEMANTICS OF ARGUMENTATION
SN - 978-989-8425-84-3
AU - Goto Y.
AU - Hagiwara T.
AU - Sawamura H.
PY - 2011
SP - 5
EP - 14
DO - 10.5220/0003656600050014