GRAPHICAL MODELS FOR RELATIONS - Modeling Relational Context

Volker Tresp, Yi Huang, Xueyan Jiang, Achim Rettinger

Abstract

We derive a multinomial sampling model for analyzing the relationships between two or more entities. The parameters in the multinomial model are derived from factorizing multi-way contingency tables. We show how contextual information can be included and propose a graphical representation of model dependencies. The graphical representation allows us to decompose a multivariate domain into interactions involving only a small number of variables. The approach formulates a probabilistic generative model for a single relation. By construction, the approach can easily deal with missing relations. We apply our approach to a social network domain where we predict the event that a user watches a movie. Our approach permits the integration of both information about the last movie watched by a user and a general temporal preference for a movie.

References

  1. Bell, R. M., Koren, Y., and Volinsky, C. (2010). All together now: A perspective on the netflix prize. Chance.
  2. Breese, J. S., Heckerman, D., and Kadie, C. (1998). Empirical analysis of predictive algorithms for collaborative filtering. In Uncertainty in Artificial Intelligence.
  3. Cands, E. J. and Recht, B. (2008). Exact matrix completion via convex optimization. Computing Research Repository - CORR.
  4. Chu, W. and Ghahramani, Z. (2009). Probabilistic models for incomplete multi-dimensional arrays. In AISTATS.
  5. Chu, W., Sindhwani, V., Ghahramani, Z., and Keerthi, S. S. (2006). Relational learning with gaussian processes. In NIPS.
  6. Domingos, P. and Richardson, M. (2007). Markov logic: A unifying framework for statistical relational learning. In Getoor, L. and Taskar, B., editors, Introduction to Statistical Relational Learning. MIT Press.
  7. Getoor, L., Friedman, N., Koller, D., Pferrer, A., and Taskar, B. (2007). Probabilistic relational models. In Getoor, L. and Taskar, B., editors, Introduction to Statistical Relational Learning. MIT Press.
  8. Heckerman, D., Chickering, D. M., Meek, C., Rounthwaite, R., and Kadie, C. M. (2000). Dependency networks for inference, collaborative filtering, and data visualization. Journal of Machine Learning Research.
  9. Hofmann, T. (1999). Probabilistic latent semantic analysis. In Uncertainty in Artificial Intelligence (UAI).
  10. Huang, Y., Tresp, V., Bundschus, M., Rettinger, A., and Kriegel, H.-P. (2010). Multivariate structured prediction for learning on the semantic web. In Proceedings of the 20th International Conference on Inductive Logic Programming (ILP).
  11. Jarvelin, K. and Kekalainen, J. (2000). IR evaluation methods for retrieving highly relevant documents. In SIGIR'00.
  12. Kemp, C., Tenenbaum, J. B., Griffiths, T. L., Yamada, T., and Ueda, N. (2006). Learning systems of concepts with an infinite relational model. In Poceedings of the National Conference on Artificial Intelligence (AAAI).
  13. Kolda, T. G. and Bader, B. W. (2009). Tensor decompositions and applications. SIAM Review.
  14. Koller, D. and Pfeffer, A. (1998). Probabilistic frame-based systems. In Proceedings of the National Conference on Artificial Intelligence (AAAI).
  15. Lauritzen, S. L. (1996). Graphical Models. Oxford Statistical Science Series.
  16. Rendle, S., Freudenthaler, C., and Schmidt-Thieme, L. (2010). Factorizing personalized markov chains for next-basket recommendation. In World Wide Web Conference.
  17. Salakhutdinov, R. and Mnih, A. (2007). Probabilistic matrix factorization. In NIPS.
  18. Takacs, G., Pilaszy, I., Nemeth, B., and Tikk, D. (2007). On the gravity recommendation system. In Proceedings of KDD Cup and Workshop 2007.
  19. Taskar, B., Abbeel, P., and Koller, D. (2002). Discriminative probabilistic models for relational data. In Uncertainty in Artificial Intelligence (UAI).
  20. Wermser, H., Rettinger, A., and Tresp, V. (2011). Modeling and learning context-aware recommendation scenarios using tensor decomposition. In Proc. of the International Conference on Advances in Social Networks Analysis and Mining.
  21. Xu, Z., Tresp, V., Yu, K., and Kriegel, H.-P. (2006). Infinite hidden relational models. In Uncertainty in Artificial Intelligence (UAI).
  22. Yu, K., Chu, W., Yu, S., Tresp, V., and Xu, Z. (2006). Stochastic relational models for discriminative link prediction. In Advances in Neural Information Processing Systems 19.
Download


Paper Citation


in Harvard Style

Tresp V., Huang Y., Jiang X. and Rettinger A. (2011). GRAPHICAL MODELS FOR RELATIONS - Modeling Relational Context . In Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2011) ISBN 978-989-8425-79-9, pages 114-120. DOI: 10.5220/0003665201140120


in Bibtex Style

@conference{kdir11,
author={Volker Tresp and Yi Huang and Xueyan Jiang and Achim Rettinger},
title={GRAPHICAL MODELS FOR RELATIONS - Modeling Relational Context},
booktitle={Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2011)},
year={2011},
pages={114-120},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003665201140120},
isbn={978-989-8425-79-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2011)
TI - GRAPHICAL MODELS FOR RELATIONS - Modeling Relational Context
SN - 978-989-8425-79-9
AU - Tresp V.
AU - Huang Y.
AU - Jiang X.
AU - Rettinger A.
PY - 2011
SP - 114
EP - 120
DO - 10.5220/0003665201140120