MODIFIED LOCAL BINARY PATTERN (MLBP) FOR ROBUST FACE RECOGNITION

Mohammad Moinul Islam, Mohammed Nazrul Islam, Vijayan K. Asari, Mohammad Moinul Islam, Mohammed Nazrul Islam, Mohammad A. Karim

Abstract

This paper presents an improvement of Local Binary Pattern (LBP) for robust face representation under varying lighting conditions. Original LBP operator compares pixels in a local neighbourhood with the centre pixel and converts the resultant binary string to 8-bit integer value. So, it is less effective under difficult lighting conditions where variation between pixels is negligible. Our proposed MLBP uses two stage encoding procedure which is more robust in detecting this variation in a local patch. The performance of the proposed method is compared with the baseline LBP under different illumination conditions.

References

  1. Liu, C., Wechsler, H., 2002. Gabor feature based classification using the enhanced Fisher linear discriminant model for face recognition. In IEEE Transactions on Image Processing, 11, 467-476.
  2. Lei, Z., Liao, S., Pietikäinen,M., Li, S., 2011. Face recognition by exploring information jointly in space, scale and orientation. In IEEE Transactions on Image Processing, 20, 247-256.
  3. Yang, M., Zhang, L., 2010. Gabor feature based sparse representation for face recognition with Gabor occlusion dictionary. In Proceedings of the European Conference on Computer Vision, ECCV 2010, 448- 461.
  4. Turk, M., Pentland, A., 1991. Face recognition using eigenfaces. In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 1991, 586-591.
  5. Gottumukkal, R., Asari, K. V., 2004. An improved face recognition technique based on modular PCA approach. Pattern Recognition Letters, 25, 4, 429-436.
  6. Yang, J., Zhang, D., Frangi , A., Yang, J., 2004. Twodimensional PCA: A new approach to appearancebased face representation and recognition. In IEEE Transactions on Pattern Analysis and Machine Intelligence, 26, 131-137.
  7. Belhumeur, P., Hespanha, J., Kriegman, D., 1997. Eigenfaces vs. fisher faces: Recognition using class specific linear projection. In IEEE Transactions on Pattern Analysis and Machine Intelligence, 19, 711- 720.
  8. Liu, C., Wechsler, H., 2003. Independent component analysis of Gabor features for face recognition. In IEEE Transactions on Neural Networks, 14, 919-928.
  9. Comon, P., 1994. Independent component analysis-a new concept? In Signal Processing, 36, 287-314.
  10. Tan , X., Triggs, B., 2010. Enhanced local texture feature sets for face recognition under difficult lighting conditions. In IEEE Transactions on Image Processing, 19, 1635-1650.
  11. Ahonen, T., Hadid , A., Pietikäinen, M., 2006. Face description with local binary patterns: Application to face recognition. In IEEE Transactions on Pattern Analysis and Machine Intelligence, 28, 2037-2041.
  12. Zhang, W., Shan, S., Gao, W., Chen, X., Zhang, H., 2005. Local Gabor binary pattern histogram sequence (LGBPHS): A novel non-statistical model for face representation and recognition. In Proceedings of IEEE International Conference on Computer Vision ICCV 2005, 786-791.
  13. Xie, S., Shan, S., Chen, X., Chen, J., 2010. Fusing local patterns of Gabor magnitude and phase for face recognition. In IEEE Transactions on Image Processing, 19, 1349-1361.
  14. Zhao, G., Pietikäinen, M., 2007. Dynamic texture recognition using local binary patterns with an application to facial expressions. In IEEE Transactions on Pattern Analysis and Machine Intelligence, 29, 915-928.
  15. Wolf, L., Hassner, T., Taigman, Y., 2010. Effective unconstrained face recognition by combining multiple descriptors and learned background statistics. In IEEE Transactions on Pattern Analysis and Machine Intelligence, 1-16.
  16. Ojala, T., Pietikäinen, M., Harwood, D., 1996. A comparative study of texture measures with classification based on feature distribution. In Pattern Recognition, 29, 51-59.
  17. Ahonen, T., Hadid, A., Pietikäinen, M., 2004. Face recognition with local binary patterns. In Proceedings of European Conference on Computer Vision, ECCV 2004, 469-481.
  18. Ojala, T., Pietikäinen, M., Mäenpää, T., 2002. Multiresolution gray-scale and rotation invariant texture classification. with local binary patterns. In IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 971-987.
Download


Paper Citation


in Harvard Style

Nazrul Islam M., Moinul Islam M., K. Asari V., Moinul Islam M., Nazrul Islam M. and A. Karim M. (2011). MODIFIED LOCAL BINARY PATTERN (MLBP) FOR ROBUST FACE RECOGNITION . In Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2011) ISBN 978-989-8425-84-3, pages 147-152. DOI: 10.5220/0003678001470152


in Bibtex Style

@conference{ncta11,
author={Mohammed Nazrul Islam and Mohammad Moinul Islam and Vijayan K. Asari and Mohammad Moinul Islam and Mohammed Nazrul Islam and Mohammad A. Karim},
title={MODIFIED LOCAL BINARY PATTERN (MLBP) FOR ROBUST FACE RECOGNITION},
booktitle={Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2011)},
year={2011},
pages={147-152},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003678001470152},
isbn={978-989-8425-84-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2011)
TI - MODIFIED LOCAL BINARY PATTERN (MLBP) FOR ROBUST FACE RECOGNITION
SN - 978-989-8425-84-3
AU - Nazrul Islam M.
AU - Moinul Islam M.
AU - K. Asari V.
AU - Moinul Islam M.
AU - Nazrul Islam M.
AU - A. Karim M.
PY - 2011
SP - 147
EP - 152
DO - 10.5220/0003678001470152