SEMI-SUPERVISED K-WAY SPECTRAL CLUSTERING USING PAIRWISE CONSTRAINTS

Guillaume Wacquet, Pierre-Alexandre Hébert, Émilie Caillault Poisson, Denis Hamad

Abstract

In this paper, we propose a semi-supervised spectral clustering method able to integrate some limited supervisory information. This prior knowledge consists of pairwise constraints which indicate whether a pair of objects belongs to a same cluster (Must-Link constraints) or not (Cannot-Link constraints). The spectral clustering then aims at optimizing a cost function built as a classical Multiple Normalized Cut measure, modified in order to penalize the non-respect of these constraints. We show the relevance of the proposed method with an illustrative dataset and some UCI benchmarks, for which two-class and multi-class problems are dealt with. In all examples, a comparison with other semi-supervised clustering algorithms using pairwise constraints is proposed.

References

  1. Han, J. and Kamber, M. (2006). Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers.
  2. Kamvar, S., Klein, D., and Manning, C. (2003). Spectral learning. In IJCAI, International Joint Conference on Artificial Intelligence, pages 561-566.
  3. Luxburg, U. (2007). A tutorial on spectral clustering. In Statistics and Computing, pages 395-416.
  4. Meila, M. and Shi, J. (2000). Learning segmentation by random walks. In NIPS12, Neural Information Processing Systems, pages 873-879.
  5. Ng, A., Jordan, M., and Weiss, Y. (2002). On spectral clustering: Analysis and an algorithm. In NIPS14, Neural Information Processing Systems, pages 849-856.
  6. Shi, J. and Malik, J. (2000). Normalized cuts and image segmentation. In PAMI, Transactions on Pattern Analysis and Machine Intelligence, pages 888-905.
  7. Wagstaff, K. and Cardie, C. (2000). Clustering with instance-level constraints. In ICML, International Conference on Machine Learning, pages 1103-1110.
  8. Wang, X. and Davidson, I. (2010). Flexible constrained spectral clustering. In KDD, International Conference on Knowledge Discovery and Data Mining, pages 563-572.
  9. Weiss, Y. (1999). Segmentation using eigenvectors: an unifying view. In IEEE, International Conference on Computer Vision, pages 975-982.
  10. Zhang, D., Zhou, Z., and Chen, S. (2007). Semi-supervised dimensionality reduction. In SIAM, 7th International Conference on Data Mining, pages 629-634.
Download


Paper Citation


in Harvard Style

Wacquet G., Hébert P., Caillault Poisson É. and Hamad D. (2011). SEMI-SUPERVISED K-WAY SPECTRAL CLUSTERING USING PAIRWISE CONSTRAINTS . In Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2011) ISBN 978-989-8425-84-3, pages 72-81. DOI: 10.5220/0003682500720081


in Bibtex Style

@conference{ncta11,
author={Guillaume Wacquet and Pierre-Alexandre Hébert and Émilie Caillault Poisson and Denis Hamad},
title={SEMI-SUPERVISED K-WAY SPECTRAL CLUSTERING USING PAIRWISE CONSTRAINTS},
booktitle={Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2011)},
year={2011},
pages={72-81},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003682500720081},
isbn={978-989-8425-84-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2011)
TI - SEMI-SUPERVISED K-WAY SPECTRAL CLUSTERING USING PAIRWISE CONSTRAINTS
SN - 978-989-8425-84-3
AU - Wacquet G.
AU - Hébert P.
AU - Caillault Poisson É.
AU - Hamad D.
PY - 2011
SP - 72
EP - 81
DO - 10.5220/0003682500720081