A PROBABILISTIC METHOD FOR PREDICTION OF MICRORNA-TARGET INTERACTIONS

Hasan Oğul, Sinan U. Umu, Y. Yener Tuncel, Mahinur S. Akkaya

Abstract

Elucidation of microRNA activity is a crucial step in understanding gene regulation. One key problem in this effort is how to model the pairwise interaction of microRNAs with their targets. As this interaction is strongly mediated by their sequences, it is desired to set up a probabilistic model to explain the binding between a microRNA sequence and the sequence of a putative target. To this end, we introduce a new model of microRNA-target binding, which transforms an aligned duplex to a new sequence and defines the likelihood of this sequence using a Variable Length Markov Chain. It offers a complementary representation of microRNA-mRNA pairs for microRNA target prediction tools or other probabilistic frameworks of integrative gene regulation analysis. The performance of present model is evaluated by its ability to predict microRNA-mRNA interaction given a mature microRNA sequence and a putative mRNA binding site. In regard to classification accuracy, it outperforms a recent method based on support vector machines.

References

  1. Alexiou P., Maragkakis M., Papadopoulos G. L. et al., Lost in translation: an assessment and perspective for computational microRNA target identification. Bioinformatics 2009; 25:3049-3055.
  2. Barbato C, Arisi I, Frizzo M. E. et al. Computational Challenges in miRNATarget Predictions: To be or Not to be a True Target? J Biomed Biotechnol 2009; 2009:803069.
  3. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215-233.
  4. Bartel D. P., MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116:281-297 Begleiter R., El-Yaniv R., Yona G., On prediction using variable order Markov models, Journal of Artificial Intelligence Research 2004, 22:385-421.
  5. Bejerano G., Yona G., 2001. Variations on probabilistic suffix trees: statistical modeling and prediction of protein families. Bioinformatics 17, 23-43.
  6. Ben-Gal I., Shani A., Gohr A., Grau J., Arviv S., Shmilovici A., Identification of transcription factor binding sites with variable-order Bayesian networks, Bioinformatics 2004; 21: 2657-2666.
  7. Buhlman P., Wyner A. J., Variable length Markov chains, Annals of Statistics 1999; 27: 480-513.
  8. Hammell M., Computational methods to identify miRNA targets. Semin Cell Dev Biol 2010 Sep;21(7):738-44.
  9. Krek A., Grun D., Poy M. N., Wolf R., Rosenberg L., Epstein E. J., MacMenamin P., da Piedade I., Gunsalus K. C., Stoffel M., Rajewsky N., Combinatorial microRNA target predictions. Nat.Genet. 2005;37:495-500.
  10. Lee R. C., Feinbaum R. L., Ambros V., The C. Elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75: 843-854.
  11. Liu B., Liu L., Tsykin A et al. Identifying functional miRNA-mRNA regulatory modules with correspondence latent dirichlet allocation. Bioinformatics 2010; 26:3105-3111.
  12. Lu J, Getz G, Miska EA et al. MicroRNA expression profiles classify human cancers. Nature 2005; 435: 834-838.
  13. Madden SF, Carpenter SB, Jeffery IB et al. Detecting microRNA activity from gene expression data, BMC Bioinformatics 2010; 11:257.
  14. Mendes ND, Freitas AT, Sagot MF. Current tools for the identification of miRNA genes and their targets. Nucleic Acid Res 2009; 37: 2419-2433.
  15. Ron D., Singer Y., Tishby N., The power of amnesia: Learning probabilistic automata with variable memory length, Machine Learning 1996; 25: 117-149.
  16. Saito T, Saetrom P. MicroRNAs - targeting and target prediction. New Biotechnology 2010; 27: 243-249.
  17. Smith T and Waterman M, “Identification of common molecular subsequences”, Journal of Molecular Biology 1981, 147: 195-7.
  18. Thijs G., Lescot M., Marchal K., Ronbauts S., De Moor B., Rouze P., Moreau Y., A higher order background model improves the detection of promoter regulatory elements by Gibbs sampling, Bioinformatics 2001; 17: 1113-1122.
  19. Wang D., Wang J., Lu M., Song F. and Cui Q., Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases, Bioinformatics 2010, 26(13): 1644-1650.
  20. Yang Y., Wang Y. P., Li, K. B., MiRTif: a support vector machine-based microRNA target interaction filter. BMC Bioinformatics 2008; 9:S4.
  21. Yoon S. and Micheli G., Prediction of regulatory modules comprising microRNAs and target genes, Bioinformatics 2005; 21: i93-i100.
  22. Yu G. and He Q., Functional similarity analysis of human virus-encoded miRNAs, Journal of Clinical Bioinformatics 2011; 1:15.
Download


Paper Citation


in Harvard Style

Oğul H., U. Umu S., Yener Tuncel Y. and S. Akkaya M. (2011). A PROBABILISTIC METHOD FOR PREDICTION OF MICRORNA-TARGET INTERACTIONS . In Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2011) ISBN 978-989-8425-84-3, pages 289-293. DOI: 10.5220/0003694902890293


in Bibtex Style

@conference{ncta11,
author={Hasan Oğul and Sinan U. Umu and Y. Yener Tuncel and Mahinur S. Akkaya},
title={A PROBABILISTIC METHOD FOR PREDICTION OF MICRORNA-TARGET INTERACTIONS},
booktitle={Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2011)},
year={2011},
pages={289-293},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003694902890293},
isbn={978-989-8425-84-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2011)
TI - A PROBABILISTIC METHOD FOR PREDICTION OF MICRORNA-TARGET INTERACTIONS
SN - 978-989-8425-84-3
AU - Oğul H.
AU - U. Umu S.
AU - Yener Tuncel Y.
AU - S. Akkaya M.
PY - 2011
SP - 289
EP - 293
DO - 10.5220/0003694902890293