A WEARABLE GAIT ANALYSIS SYSTEM USING INERTIAL SENSORS PART I - Evaluation of Measures of Gait Symmetry and Normality against 3D Kinematic Data

A. Sant'Anna, N. Wickstrom, R. Zügner, R. Tranberg

Abstract

Gait analysis (GA) is an important tool in the assessment of several physical and cognitive conditions. The lack of simple and economically viable quantitative GA systems has hindered the routine clinical use of GA in many areas. As a result, patients may be receiving sub-optimal treatment. The present study introduces and evaluates measures of gait symmetry and gait normality calculated from inertial sensor data. These indices support the creation of mobile, cheap and easy to use quantitative GA systems. The proposed method was compared to measures of symmetry and normality derived from 3D kinematic data. Results show that the proposed method is well correlated to the kinematic analysis in both symmetry (r=0.84, p<0.0001) and normality (r=0.81, p<0.0001). In addition, the proposed indices can be used to classify normal from abnormal gait.

References

  1. Aminian, K., Rezakhanlou, K., De Andres, E., Fritsch, C., Leyvraz, P. F., and Robert, P. (1999). Temporal feature estimation during walking using miniature accelerometers: an analysis of gait improvement after hip arthroplasty. Medical and Biological Engineering and Computing, 37:686-691.
  2. Auvinet, B., Chaleil, D., and Barrey, E. (1999). Accelerometric gait analysis for use in hospital outpatients. Revue du Rhumatisme: English ed., 66(7-9):389-397.
  3. Baker, R., McGinley, J. L., Schwartz, M. H., Beynon, S., Rozumalski, A., Graham, H. K., and Tirosh, O. (2009). The gait profile score and movement analysis profile. Gait & Posture, 30(3):265-269.
  4. Barton, G., Lisboa, P., Lees, A., and Attfield, S. (2007). Gait quality assessment using self-organising artificial neural networks. Gait & Posture, 25(3):374 - 379.
  5. Barton, G. J., Hawken, M. B., Scott, M. A., and Schwartz, M. H. (2010). Movement deviation profile: A measure of distance from normality using a self-organizing neural network. Human Movement Science, In Press, Corrected Proof.
  6. Beauchet, O., Allali, G., Berrut, G., Hommet, C., Dubost, V., and Assal, F. (2008). Gait analysis in demented subjects: interests and perspectives. Neuropsychiatric Disease and Treatment, 4(1):155-160.
  7. Beynon, S., McGinley, J. L., Dobson, F., and Baker, R. (2010). Correlations of the gait profile score and the movement analysis profile relative to clinical judgments. Gait & Posture, 32(1):129-132.
  8. Chang, F. M., Rhodes, J. T., Flynn, K. M., and Carollo, J. J. (2010). The role of gait analysis in treating gait abnormalities in cerebral palsy. Orthopedic Clinics of North America, 41(4):489 - 506.
  9. Chau, T., Young, S., and Redekop, S. (2005). Managing variability in the summary and comparison of gait data. Journal of NeuroEngineering and Rehabilitation, 2(1):22.
  10. Coutts, F. (1999). Gait analysis in the therapeutic environment. Manual Therapy, 4(1):2 - 10.
  11. Crenshaw, S. J. and Richards, J. G. (2006). A method for analyzing joint symmetry and normalcy, with an application to analyzing gait. Gait & Posture, 24(4):515 - 521.
  12. Cruz, H. et al. (2008). Evidence of abnormal lower-limb torque coupling after stroke: An isometric study supplemental materials and methods. Stroke, 39(1):139.
  13. DeLuca, P. A., Davis, R. B., unpuu, S., Rose, S., and Sirkin, R. (1997). Alterations in surgical decision making in patients with cerebral palsy based on threedimensional gait analysis. Journal of Pediatric Orthopaedics, 17(5):608-614.
  14. Detrembleur, C., van den Hecke, A., and Dierick, F. (2000). Motion of the body centre of gravity as a summary indicator of the mechanics of human pathological gait. Gait & Posture, 12(3):243-250.
  15. Frenkel-Toledo, S., Giladi, N., Peretz, C., Herman, T., Gruendlinger, L., and Hausdorff, J. (2005). Effect of gait speed on gait rhythmicity in Parkinson's disease: variability of stride time and swing time respond differently. Journal of NeuroEngineering and Rehabilitation, 2(1):23.
  16. Gouwanda, D. and Senanayake, A. S. M. N. (2011). Identifying gait asymmetry using gyroscopes-a crosscorrelation and normalized symmetry index approach. Journal of Biomechanics, 44(5):972 - 978.
  17. Hartmann, A., Murer, K., de Bie, R., and de Bruin, E. D. (2009). Reproducibility of spatio-temporal gait parameters under different conditions in older adults using a trunk tri-axial accelerometer system. Gait & Posture, 30(3):351-355.
  18. Hausdorff, J. M., Schaafsma, J. D., Balash, Y., Bartels, A. L., Gurevich, T., and Giladi, N. (2003). Impaired regulation of stride variability in parkinson's disease subjects with freezing of gait. Experimental Brain Research, 149:187-194.
  19. Kay, R. M., Dennis, S., Rethlefsen, S., Reynolds, R. K., Skaggs, D. L., and Tolo, V. T. (2000). The effect of preoperative gait analysis on orthopaedic decision making. Clinical Orthopaedics and Related Research, 372:217-222.
  20. Lofterød, B. and Terjesen, T. (2008). Results of treatment when orthopaedic surgeons follow gait-analysis recommendations in children with cp. Developmental Medicine & Child Neurology, 50(7):503-509.
  21. Moe-Nilssen, R. and Helbostad, J. L. (2004). Estimation of gait cycle characteristics by trunk accelerometry. Journal of Biomechanics, 37(1):121 - 126.
  22. Novacheck, T. F., Stout, J. L., and Tervo, R. (2000). Reliability and validity of the gillette functional assessment questionnaire as an outcome measure in children with walking disabilities. Journal of Pediatric Orthopaedics, 20(1):75.
  23. Plotnik, M., Giladi, N., Balash, Y., Peretz, C., and Hausdorff, J. M. (2005). Is freezing of gait in Parkinson's disease related to asymmetric motor function? Annals of Neurology, 57(5):656-663.
  24. Read, H. S., Hazlewood, M. E., Hillman, S. J., Prescott, R. J., and Robb, J. E. (2003). Edinburgh visual gait score for use in cerebral palsy. Journal of Pediatric Orthopaedics, 23(3):296-301.
  25. Salarian, A., Russmann, H., Vingerhoets, F., Dehollain, C., Blanc, Y., Burkhard, P., and Aminian, K. (2004). Gait assessment in Parkinson's disease: Toward an ambulatory system for long-term monitoring. IEEE Transactions on Biomedical Engineering, 51(8):1434 -1443.
  26. Sant'Anna, A., Salarian, A., and Wickström, N. (2011). A new measure of movement symmetry in early parkinson's disease patients using symbolic processing of inertial sensor data. IEEE Transaction on biomedical Engineering. Epub ahead of print, 2011.
  27. Sant'Anna, A. and Wickström, N. (2010). A symbol-based approach to gait analysis from acceleration signals: Identification and detection of gait events and a new measure of gait symmetry. IEEE Transactions on Information Technology in Biomedicine, 14(5):1180 - 1187.
  28. Schutte, L. M., Narayanan, U., Stout, J. L., Selber, P., Gage, J. R., and Schwartz, M. H. (2000). An index for quantifying deviations from normal gait. Gait & Posture, 11(1):25-31.
  29. Schwartz, M. H. and Rozumalski, A. (2008). The gait deviation index: A new comprehensive index of gait pathology. Gait & Posture, 28(3):351-357.
  30. Shin, K.-Y., Rim, Y., Kim, Y., Kim, H., Han, J., Choi, C., Lee, K., and Mun, J. (2010). A joint normalcy index to evaluate patients with gait pathologies in the functional aspects of joint mobility. Journal of Mechanical Science and Technology, 24:1901-1909.
  31. Silver, K., Macko, R., Forrester, L., Goldberg, A., and Smith, G. (2000). Effects of aerobic treadmill training on gait velocity, cadence, and gait symmetry in chronic hemiparetic stroke: A preliminary report. Neurorehabilitation and Neural Repair, 14(1):65-71.
  32. Toro, B., Nester, C., and Farren, P. (2003). A review of observational gait assessment in clinical practice. Physiotherapy Theory and Practice, 19(3):137-149.
  33. Tranberg, R., Saari, T., Zügner, R., and Kärrholm, J. (2011). Simultaneous measurements of knee motion using an optical tracking system and radiostereometric analysis (RSA). Acta Orthopaedica, 82(2):171-176.
  34. Verghese, J., Lipton, R., Hall, C., Kuslansky, G., Katz, M., and Buschke, H. (2002). Abnormality of gait as a predictor of non-Alzheimer's dementia. New England Journal of Medicine, 347(22):1761.
Download


Paper Citation


in Harvard Style

Sant'Anna A., Wickstrom N., Zügner R. and Tranberg R. (2012). A WEARABLE GAIT ANALYSIS SYSTEM USING INERTIAL SENSORS PART I - Evaluation of Measures of Gait Symmetry and Normality against 3D Kinematic Data . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2012) ISBN 978-989-8425-89-8, pages 180-188. DOI: 10.5220/0003707601800188


in Bibtex Style

@conference{biosignals12,
author={A. Sant'Anna and N. Wickstrom and R. Zügner and R. Tranberg},
title={A WEARABLE GAIT ANALYSIS SYSTEM USING INERTIAL SENSORS PART I - Evaluation of Measures of Gait Symmetry and Normality against 3D Kinematic Data},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2012)},
year={2012},
pages={180-188},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003707601800188},
isbn={978-989-8425-89-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2012)
TI - A WEARABLE GAIT ANALYSIS SYSTEM USING INERTIAL SENSORS PART I - Evaluation of Measures of Gait Symmetry and Normality against 3D Kinematic Data
SN - 978-989-8425-89-8
AU - Sant'Anna A.
AU - Wickstrom N.
AU - Zügner R.
AU - Tranberg R.
PY - 2012
SP - 180
EP - 188
DO - 10.5220/0003707601800188