SEMIDEFINITE RELAXATIONS FOR THE SCHEDULING NUCLEAR OUTAGES PROBLEM

Abdel Lisser, Agnes Gorge, Riadh Zorgati

Abstract

We investigate semidefinite relaxations for solving aMIQP (Mixed-Integer Quadratic Program) formulation of the scheduling of nuclear power plants outages, which is extremely hard to solve with CPLEX. Based on our numerical experiments, results obtained with semidefinite relaxations improve those obtained with continuous relaxation: the gap between the optimal solution and the continuous relaxation is on average equal to 1.80% whereas the semidefinite relaxation yields an average gap of 1.56\%. These bounds are then used to obtain a feasible solution with a randomized rounding procedure.

References

  1. Borchers, B. (1999). Csdp, a C library for semidefinite programming.
  2. Helmberg, C. and Rendl, F. (2000). A spectral bundle method for semidefinite programming. SIAM Journal on Optimization, 10(3):673-696.
  3. Helmberg, C., Rendl, F., Vanderbei, R. J., and Wolkowicz, H. (1996). An interior-point method for semidefinite programming. SIAM Journal on Optimization, 6:342- 361.
  4. Khemmoudj, M. O. I., Bennaceur, H., and Porcheron, M. (2006). When constraint programming and local search solve the scheduling problem of electricité de france nuclear power plant outages. In 12th International Conference on Principles and Practice of Constraint Programming (CP'06), pages 271-283. LNCS.
  5. Laurent, M., , , and Rendl, F. (2005). Semidefinite programming and integer programming. In K. Aardal, G. N. and Weismantel, R., editors, Handbook on Discrete Optimization, pages 393-514.
  6. Porcheron, M., Gorge, A., Juan, O., Simovic, T., and Dereu, G. (2009). Challenge roadef/euro 2010: A large-scale energy management problem with varied constraints. Technical report, EDF R&D. http://challenge.roadef.org.
  7. Sherali, H. D. and Adams, W. P. (1990). A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM Journal on Discrete Mathematics, 3(3):411- 430.
  8. Todd, M. J. (2001). Semidefinite optimization. Acta Numerica, 10:515-560.
  9. Vandenberghe, L. and Boyd, S. (1994). Semidefinite programming. SIAM Review, 38:49-95.
  10. Wolkowicz, H., Saigal, R., and Vandenberghe, L., editors. Handbook of Semidefinite Programming: Theory, Algorithms, and Applications, volume 27.
Download


Paper Citation


in Harvard Style

Lisser A., Gorge A. and Zorgati R. (2012). SEMIDEFINITE RELAXATIONS FOR THE SCHEDULING NUCLEAR OUTAGES PROBLEM . In Proceedings of the 1st International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES, ISBN 978-989-8425-97-3, pages 386-391. DOI: 10.5220/0003743203860391


in Bibtex Style

@conference{icores12,
author={Abdel Lisser and Agnes Gorge and Riadh Zorgati},
title={SEMIDEFINITE RELAXATIONS FOR THE SCHEDULING NUCLEAR OUTAGES PROBLEM},
booktitle={Proceedings of the 1st International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,},
year={2012},
pages={386-391},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003743203860391},
isbn={978-989-8425-97-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 1st International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,
TI - SEMIDEFINITE RELAXATIONS FOR THE SCHEDULING NUCLEAR OUTAGES PROBLEM
SN - 978-989-8425-97-3
AU - Lisser A.
AU - Gorge A.
AU - Zorgati R.
PY - 2012
SP - 386
EP - 391
DO - 10.5220/0003743203860391