DETECTION OF INCONSISTENCIES IN HOSPITAL DATA CODING

Juliano Gaspar, Fernando Lopes, Alberto Freitas

Abstract

Introduction: Health professionals need data, in sufficient quantity and quality, and tools that can manage the vast amount of available data. They need help for data management and appropriate support for decision making. Introduction: Health professionals need data, in sufficient quantity and quality, and tools that can manage the vast amount of available data. They need help for data management and appropriate support for decision making. Aim: The focus of this study is to develop a prototype that can contribute to the identification of data quality problems in clinical and administrative data. Methods: Methods involve the definition of requisites and business rules, the prototype development and testing, and the realization of two studies using the prototype. Results: Studies performed using the prototype resulted in the detection of many data problems and inconsistencies. Amongst those we can point out, for instance, that 82,000 (15%) episodes had ‘diagnostic code does not exist in ICD-9-CM table’ and that 783 (0,2%) episodes within ‘female breast cancer’ had the variable gender equal to ‘male’. Discussion: This prototype, besides contributing to the detection of data quality problems, is also expected to be an incentive to the improvement of information system architectures. It shows the importance of the development of mechanisms to detect and validate data in health environments.

References

  1. ACSS, (2009). CID-9-MC Guidelines Oficiais para Codificação: Em vigor a partir de Outubro de 2009 (Lisboa, Administração Central do Sistema de Saúde, IP).
  2. Arts, D., Keizer, N., and Scheffer, G.-J., (2002). Defining and Improving Data Quality in Medical Registries: A Literature Review Case Study, and Generic Framework. In: J Am Med Inform Assoc 9, 600-611.
  3. Aylin, P., Bottle, A., and Majeed, A., (2007). Use of administrative data or clinical databases as predictors of risk of death in hospital: comparison of models. In: BMJ 334, 1044.
  4. Barateiro, J., and Galhardas, H., (2005). A Survey of Data Quality Tools. In: Datenbank-Spektrum 5, 15-21.
  5. Bastos, J., Barros, H., and Lunet, N., (2007). Evolução da Mortalidade por Cancro da Mama em Portugal (1955- 2002). In: Acta Med Port, 139-144.
  6. Chandola, V., Banerjee, A., and Kumar, V., (2009). Anomaly Detection: A Survey. In: ACM Computing Surveys 41.
  7. Cruz-Correia, R., Rodrigues, P., Freitas, A., Almeida, F., Chen, R., and Costa-Pereira, A., (2009). Data Quality and Integration Issues in Electronic Health Records. In Information Discovery on Electronic Health Records. In: CRC Data Mining and Knowledge Discovery Series, H. V. C.a. Hall, ed., pp. 55-95.
  8. Daniel, F., Casati, F., Palpanas, T., Chayka, O., and Cappiello, C., (2008). Enabling Better Decisions through Quality-aware Reports. In: International Conference on Information Quality (ICIQ) (USA).
  9. Freitas, A., Brazdil, P., and Costa-Pereira, A., (2005). Mining Hospital Databases for Management Support. Paper presented at: IADIS Virtual Multi Conference on Computer Science and Information Systems, pp. 207- 212.
  10. Ginde, A. A., Tsai, C. L., Blanc, P. G., and Camargo, C. A., Jr., (2008). Positive predictive value of ICD-9-CM codes to detect acute exacerbation of COPD in the emergency department. In: Jt Comm J Qual Patient Saf 34, 678-680.
  11. INE, (2011). Boletim mensal de estatística: Janeiro de 2011. Available in: http://www.ine.pt. Access In: 02/03/2011.
  12. Kumar, V., Kumar, D., and Singh, R. K., (2008). Outlier Mining in Medical Databases: An Application of Data Mining in Health Care Management to Detect Abnormal Values Presented In Medical Databases. In: IJCSNS International Journal of Computer Science and Network Security, 272-277.
  13. Lopes, F., (2010). Portal da Codificação e dos GDH. Available in: http://portalcodgdh.min-saude.pt. Access In: 31/10/2010.
  14. Oliván, J. A. S., (1997). Sistemas de información hospitalarios: el CMBD. In: Scire: representación y organización del conocimiento 3, 115-130.
  15. Olson, J. E., (2003). Data Quality - The Accuracy Dimension, Morgan Kaufmann Publishers edn.
  16. Pinto, R., (2010). Sistemas de informações hospitalares de Brasil, Espanha e Portugal - Semelhanças e diferenças. In: FIOCRUZ (Rio de Janeiro, Escola Nacional de Saúde Pública Sergio Arouca), pp. 162.
  17. Price, J., Estrada, C. A., and Thompson, D., (2003). Administrative Data Versus Corrected Administrative Data. In: Am J Med Qual 19, 38-44.
  18. Romano, P. S., Zach, A., Luft, H. S., Rainwater, J., Remy, L. L., and Campa, D., (1995). The California Hospital Outcomes Project: using administrative data to compare hospital performance. In: Jt Comm J Qual Improv 21, 668-682.
  19. Silva-Costa, T., (2010). Indicadores de Produção Hospitalar - Uma forma de medir a produção dos hospitais Portugueses (Porto, Faculdade de Medicina da Universidade do Porto), pp. 172.
  20. Silva-Costa, T., Marques, B., and Freitas, A., (2010). Problemas de Qualidade de Dados em Bases de Dados de Internamentos Hospitalares. Paper presented at: 5ª Conferência Ibérica de Sistemas e Tecnologias de Informação (Santiago de Compostela).
  21. SNS, (2009). Portaria n.º 839-A/2009 - Ministério da Saúde de Portugal, M.d. Saúde, ed. (Lisboa, Diário da República), pp. 4978-(4972) a 4978-(4124).
  22. Tayi, G. K., and Ballou, D. P., (1998). Examining Data Quality. In: CACM 41, 54-57.
  23. Wang, R. Y., (1998). A Product Perspective on Total Data Quality Management. In: CACM 41, 58-65.
  24. WHO, (2011). World Health Organization. Available in: http://www.who.int/en/. Access In: 20/07/2011.
Download


Paper Citation


in Harvard Style

Gaspar J., Lopes F. and Freitas A. (2012). DETECTION OF INCONSISTENCIES IN HOSPITAL DATA CODING . In Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2012) ISBN 978-989-8425-88-1, pages 189-194. DOI: 10.5220/0003757301890194


in Bibtex Style

@conference{healthinf12,
author={Juliano Gaspar and Fernando Lopes and Alberto Freitas},
title={DETECTION OF INCONSISTENCIES IN HOSPITAL DATA CODING},
booktitle={Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2012)},
year={2012},
pages={189-194},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003757301890194},
isbn={978-989-8425-88-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2012)
TI - DETECTION OF INCONSISTENCIES IN HOSPITAL DATA CODING
SN - 978-989-8425-88-1
AU - Gaspar J.
AU - Lopes F.
AU - Freitas A.
PY - 2012
SP - 189
EP - 194
DO - 10.5220/0003757301890194