WAVELET PERFORMANCE IN BIOMETRIC IDENTIFICATION SYSTEM ACCORDING TO USERS INCREASE

Juan José Fuertes, Carlos Manuel Travieso, Jesús B. Alonso

Abstract

This work shows a simple and robust biometric identification system through the use of the palmprint. It proves the efficiency of the wavelet transform regardless of users’ number. Firstly, the hand palm image with scale, rotation and translation invariance is isolated from the hand image recorded. Then, the “wavelet transform” is used to extract the texture features from gray-scale images. Three wavelet families, haar, daubechies and biortogonal are studied in order to get the best recognition rate. 1440 hand images of 144 people with 10 samples each one have been acquired by means of a commercial scanner with 150 dpi resolution. Support Vector Machine (SVM) is the main classifier used as identifier in closed mode. A recognition rate of 99.83% for 50 users and 99.76% for 144 users demonstrate the strong performance of wavelet transform in biometrics according to users increase.

References

  1. Badrinath, G. and Gupta, P. (2009). Robust Biometric System Using Palmprint for Personal Verification. Advances in Biometrics, volume 5558 of Lecture Notes in Computer Science, pages 554-565. Springer Berlin/Heidelberg.
  2. Bin, Z., Yong, L., and Shao-Wei X. (2000). Support vector machine and its application in handwritten numeral recognition. Proceedings of the 15th International Conference on Pattern Recognition, volume 2, pages 720-723, Barcelona, Spain.
  3. Cortes, C. and Vapnik, V. (1995). Support Vector Networks. Machine Learning, 20: 273-297.
  4. Ferrer, M. A., Morales, A., Travieso, C. M., and Alonso, J.B. (2007). Low Cost Multimodal Biometric identification System Based on Hand Geometry, Palm and Finger Print Texture. 41st Annual IEEE International Carnahan Conference on Security Technology, pages 52-58, Otawa, Canada.
  5. Fuertes, J. J., Travieso, C. M., Ferrer, M. A., and Alonso, J.B. (2010). Intra-modal biometric system using handgeometry and palmprint texture. Security Technology (ICCST), 2010 IEEE International Carnahan Conference on, pages 318-322, San José, California.
  6. Goh, M. K., Connie, T., Teoh, A. B. J., and Ngo, D. C. L. (2006). A Fast Palm Print Verification System, Proceedings of the International Conference on Computer Graphics, Imaging and Visualization, pages 168-172, London, UK.
  7. Gonzalez, R. C. and Wood, R. E. (2008). Digital Image Processing. Prentice Hall, 3rd edition.
  8. Guo, Z., Zhang, D., Zhang, L., and Zuo, W. (2009). Palmprint verification using binary orientation cooccurrence vector. Pattern Recognition Letters, 30:1219-1227.
  9. Li, W., Zhang, D., Zhang, L., Lu, G., and Yan, J. (2011). 3-D Palmprint Recognition with Joint Line and Orientation Features. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 41(2): 274-279.
  10. Liu, F., Lin, C. X., Cui, P.Y., and Dong, T. (2007). Palmprint recognition based on ISODATA clustering algorithm. Proceedings of the 2007 International Conference on Wavelet Analysis and Pattern Recognition, volume 3, pages 1129-1133. Beijing, China.
  11. Masood, H., Mumtaz, M., Butt, M. A. A., Mansoor, A. B., and Khan, S. A. (2008). Wavelet Based Palmprint Authentication System. Proceedings of IEEE International Symposium of Biometric and Security Technologies, pages 1-7, Islamabad, Pakistan.
  12. Pavesic, N., Ribaric, S.,and Ribaric, D. (2004). Personal Authentication Using Hand-Geometry and Palmprint Features. Proceedings of the Workshop on Biometrics at ICPR04, Cambridge, UK.
  13. Steinwart, I. and Christmann, A. (2008). Support Vector Machines. Information Science and Statistics, Springer.
  14. Travieso, C. M., Fuertes, J. J., and Alonso, J. B. (2011). Derivative Method for Hand Palm Texture Biometric Verification. Security Technology (ICCST), 2011 IEEE International Carnahan Conference on, Barcelona, Spain.
  15. Villegas, O.O.V. and Pinto R.E. (2006). Procesamiento Digital de Imágenes en el Dominio Wavelet. IEEE Looking Forward, 13: 13-16.
  16. Yue, F., Zuo, W., Zhang, D., and Li, B. (2011). Fast palmprint identification with multiple templates per subject. Pattern Recognition, 32(8): 1108-1118.
  17. Zhang, D.D. (2004). Palmprint Authentication. International Series on Biometrics, volume 3, pages 256.
  18. Zhang, D., Guo, Z., Lu, G., Zhang, L., and Zuo, W. (2010). An Online System of Multispectral Palmprint Verification. IEEE Transactions on Instrumentation and Measurement, 59(2): 480-490.
  19. Zhang, D., Kanhangad, V., Luo, N., and Kumar, A. (2009). Robust palm print verification using 2D and 3D features. Pattern Recognition, 43(1): 358-368.
  20. Zhang, L., Guo, Z., Wang, Z., and Zhang, D. (2007). Palmprint Verification using Complex Wavelet Transform. IEEE International Conference on Image Processing, volume 2, pages 417-420, San Antonio, Texas, USA.
Download


Paper Citation


in Harvard Style

Fuertes J., Travieso C. and B. Alonso J. (2012). WAVELET PERFORMANCE IN BIOMETRIC IDENTIFICATION SYSTEM ACCORDING TO USERS INCREASE . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: MPBS, (BIOSTEC 2012) ISBN 978-989-8425-89-8, pages 482-487. DOI: 10.5220/0003770604820487


in Bibtex Style

@conference{mpbs12,
author={Juan José Fuertes and Carlos Manuel Travieso and Jesús B. Alonso},
title={WAVELET PERFORMANCE IN BIOMETRIC IDENTIFICATION SYSTEM ACCORDING TO USERS INCREASE},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: MPBS, (BIOSTEC 2012)},
year={2012},
pages={482-487},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003770604820487},
isbn={978-989-8425-89-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: MPBS, (BIOSTEC 2012)
TI - WAVELET PERFORMANCE IN BIOMETRIC IDENTIFICATION SYSTEM ACCORDING TO USERS INCREASE
SN - 978-989-8425-89-8
AU - Fuertes J.
AU - Travieso C.
AU - B. Alonso J.
PY - 2012
SP - 482
EP - 487
DO - 10.5220/0003770604820487