FRAMEWORK FOR COMPUTER AIDED ANALYSIS OF MEDICAL PROTOCOLS IN A HOSPITAL

Rene Schult, Pawel Matuszyk, Myra Spiliopoulou

Abstract

We study the potential of analyzing medical protocols with data mining methods for resource planing. Background. Medical protocols can be exploited in several resource planing applications, such as optimizing occupancy of surgery rooms or scheduling teams for surgery operations. Literature has identified many variables that can be used to predict resource demand; some of them can be extracted from medical protocols. Contribution. We propose a high-level framework for knowledge discovery from medical protocols, and present a first instantiation in a German hospital. We report on the findings of this instantiation for the task of predicting surgical room occupancy time.

References

  1. Avison, D. and Young, T. (2007). Time to rethink health care and ICT? Communications of the ACM, 50(6):69-74.
  2. Combi, C., Keravnou-Papailiou, E., and Shahar, Y. (2010). Temporal Information Systems in Medicine. Springer.
  3. Dexter, F., Davis, M., Halbeis, C. E., Marjamaa, R., Marty, J., McIntosh, C., Nakata, Y., Thenuwara, K. N., Sawa, T., and Vigoda, M. (2006). Mean operating room times differ by 50% among hospitals in different countries for laparoscopic cholecystectomy and lung lobectomy. Journal of Anesthesia (2006) 20:319-322.
  4. DGAI (1993). Qualitätssicherung und Datenverarbeitung in der Anästhesie. Kerndatensatz Qualitätssicherung in der Anästhesie. Anästh Intensivmed, 34:331-335.
  5. Eijkemans, M. J. C., van Houdenhoven, M., Nguyen, T., Boersma, E., Steyerberg, E. W., and Kazemier, G. (2010). Predicting the unpredictable: A new prediction model for operating room times using individual characteristics and the surgeon's estimate. Anesthesiology 2010; 112:41-9.
  6. Ho, T. K. (1995). Random decision forests. 3rd Int'l Conf. on Document Analysis and Recognition.
  7. Quinlan, J. (1986). Induction of decision trees. Machine Learning 1: 81-106, 1986.
  8. Schmidberger, G. and Eibe, F. (2005). Unsupervised discretization using tree-based density estimation. Lecture Notes in Computer Science, Volume 3721/2005, 240-251.
  9. Schult, R., Matuszyk, P., and Spiliopoulou, M. (2011). Prediction of surgery duration using empirical anesthesia protocols. In The First International Workshop on Knowledge Discovery in Health Care and Medicine (KDHCM 2011), pages 66 - 77.
  10. Stead, W., Hammond, W., and Straube, M. (1983). A chartless record - is it adequate? Journal of Medicine Systems, 7:103 - 109.
  11. WHO (2011). World health organization: International classification of diseases (ICD). http://www.who.int/ classifications/icd/en/.
  12. Wilson, E. V. and Tulu, B. (2010). The Rise of a HealthIT Academic Focus. Communications of the ACM, 53(5):147-150.
  13. Witten, I. H. and Eibe, F. (2005). Data mining : practical machine learning tools and techniques. Amsterdam: Elsevier; San Francisco, CA: Morgan Kaufmann.
Download


Paper Citation


in Harvard Style

Schult R., Matuszyk P. and Spiliopoulou M. (2012). FRAMEWORK FOR COMPUTER AIDED ANALYSIS OF MEDICAL PROTOCOLS IN A HOSPITAL . In Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2012) ISBN 978-989-8425-88-1, pages 225-230. DOI: 10.5220/0003776702250230


in Bibtex Style

@conference{healthinf12,
author={Rene Schult and Pawel Matuszyk and Myra Spiliopoulou},
title={FRAMEWORK FOR COMPUTER AIDED ANALYSIS OF MEDICAL PROTOCOLS IN A HOSPITAL},
booktitle={Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2012)},
year={2012},
pages={225-230},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003776702250230},
isbn={978-989-8425-88-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2012)
TI - FRAMEWORK FOR COMPUTER AIDED ANALYSIS OF MEDICAL PROTOCOLS IN A HOSPITAL
SN - 978-989-8425-88-1
AU - Schult R.
AU - Matuszyk P.
AU - Spiliopoulou M.
PY - 2012
SP - 225
EP - 230
DO - 10.5220/0003776702250230