C. D. Maciel, D. M. Simpson, P. L. Newland


In locust local circuits that control limb movements, the neural signals are processed by both spiking and nonspiking interneurons that operate in parallel to process sensory information. These interneurons receive sensory inputs from leg mechanoreceptors and together project to leg motor neuron pools. The main feature of the nonspiking interneurons is their ability to communicate with other neurons without the intervention of nerve impulses, or spikes, so that they exert graded control over their postsynaptic motor neurons, while spiking local interneurons communicate by means of action potentials and are involved in the integration of sensory signals. Our work presents an investigation from different classes of neurons driven by random Gaussian excitatory movements to a proprioceptor at the knee joint. The underlying aim of this work was to use information theory in understanding connectivity in the neural network.


  1. Alonso, J. F., Mananas, M. A., Topor, D. H. Z. L., and Bruce, E. N. (2007). Evaluation of respiratory muscles activity by means of cross mutual information function at different levels of ventilatory effort. IEEE Trans. on Biomedical Eng., 54(9):1573-1582.
  2. Bialek, W., Nemenman, I., and Tishby, N. (2001). Predictability, complexity and learning. Neural Comp, (13):2409 - 2463.
  3. Burrows, M. (1996). The Neurobiology of an Insect Brain. Oxford University Press, USA.
  4. Cover, T. M. and Thomas, J. A. (2006). Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing). Wiley-Blackwell, second edition.
  5. Delcomyn, F. (2004). Insect walking and robots. Annu. Rev. Entomol., 49(3):51-70.
  6. Dionisio, A., Menezes, R., and Mendes, D. A. (2004). Mutual information: a measure of dependency for nonlinear time series. Physica A, 344:326-329.
  7. Ebeling, W. (2002). Entropies and predictability of nonlinear processes and time series. In Sloot, P., Hoekstra, A., Tan, C., and Dongarra, J., editors, Computational Science ICCS 2002, volume 2331 of Lecture Notes in Computer Science, pages 1209-1217. Springer Berlin / Heidelberg.
  8. Erdogmus, D. and Principe, J. C. (2006). From linear adaptative filtering to nonlinear information processing. IEEE Signal Processing Magazine, 14.
  9. Fourtner, C. (1976). Central nervous control of cockroach walking, pages 401-418. Plenum, New York.
  10. Kondoh, Y., Okuma, J., and Newland, P. L. (1995). Dynamics of neurons controlling movements of a locust hind leg: Wiener kernel analysis of the responses of proprioceptive afferents. Journal of Neurophysiology, 73(5):332-340.
  11. Kugiumtzis, D. (2002). Surrogate Data Test on Time Series, chapter 12, pages 267-282. Kluwer Academic Publishers.
  12. Li, W. (1990). Mutual information functions versus correlation functions. Journal of Statistical Physics, 60(5- 6):823 - 837.
  13. Marschinski, R. and Kantz, H. (2002). Analysing the information flow between financial time series. Eur. Phys. J. B, 30(2):275-281.
  14. Newland, P. L. and Kondoh, Y. (1997). Dynamics of neurons controlling movements of a locust hind leg ii. flexor tibiae motor neurons. Journal of neurophysiology, 77(3):1731-1746.
  15. Nichols, J. (2006). Examining structural dynamics using information flow. Probabilistic Engineering Mechanics, 21(4):420-433.
  16. Palus?, M., Komárek, V., Hrnc?ír?, Z., and S? te?rbová, K. (2001). Synchronization as adjustment of information rates: Detection from bivariate time series. Phys. Rev. E, 63(4):046211.
  17. Palus?, M. and Stefanovska, A. (2003). Direction of coupling from phases of interacting oscillators: An information-theoretic approach. Phys. Rev. E, 67(5):055201.
  18. Palus?, M. and Vejmelka, M. (2007). Directionality of coupling from bivariate time series: How to avoid false causalities and missed connections. Phys. Rev. E, 75(5):056211.
  19. Pearl, J. (2009). Causal inference in statistics: An overview. Statistics Surveys, (3):96-146.
  20. Pérez, F. and Granger, B. E. (2007). IPython: a System for Interactive Scientific Computing. Comput. Sci. Eng., 9(3):21-29.
  21. Schreiber, T. (2000). Measuring information transfer. Phys. Rev. Lett., 85(2):461-464.
  22. Schreiber, T. and Schmitz, A. (1996). Improved surrogate data for nonlinearity tests. Phys. Rev. Lett., 77:635.
  23. Schreiber, T. and Schmitz, A. (2000). Surrogate time series. Physica D, 142:346-382.
  24. Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(3):379-423.
  25. Urbach, R. M. A. (2000). Footprints of Chaos in the Markets: Analyzing Non-linear Time Series in Financial Markets and other Real Systems. Prentice Hall Publishing, USA.
  26. Vastano, J. A. and Harry, S. L. (1988). Information transport in spatiotemporal systems. Phys. Rev. Lett., 60(18):1773-1776.
  27. Venema, V. K. C., Ament, F., and Simmer, C. (2006). A stochastic iterative amplitude adjusted fourier transform algorithm with improved accuracy. Nonlinear Processes in Geophysics, 13(3):247-363.
  28. Vidal-Gadea, A., Jing, X. J., Simpson, D. M., Dewhirst, O., Kondoh, Y., Allen, R., and Newland, P. (2010). Coding characteristics of spiking local interneurons during imposed limb movements in the locust. Journal of Neurophysiology, 103:603 - 615.
  29. Ward, B. D. and Mazaheri, Y. (2008). Information transfer rate in fmri experiments measured using mutual information theory. Journal of Neuroscience Methods, 167(1):22-30.

Paper Citation

in Harvard Style

D. Maciel C., M. Simpson D. and L. Newland P. (2012). INFERENCE ABOUT MULTIPLE PATHWAYS IN MOTOR CONTROL LIMB IN LOCUST . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2012) ISBN 978-989-8425-89-8, pages 69-75. DOI: 10.5220/0003782200690075

in Bibtex Style

author={C. D. Maciel and D. M. Simpson and P. L. Newland},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2012)},

in EndNote Style

JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2012)
SN - 978-989-8425-89-8
AU - D. Maciel C.
AU - M. Simpson D.
AU - L. Newland P.
PY - 2012
SP - 69
EP - 75
DO - 10.5220/0003782200690075