A FRONT-END STAGE FOR NEURAL SIGNAL RECORDING BASED ON A SIGMA-DELTA MODULATOR

Caterina Carboni, Daniela Loi, Massimo Barbaro

Abstract

A new device for peripheral neural signals recording is presented. The designed system is composed by an analog and a digital part. The analog part, to be integrated on an implantable CMOS chip, is kept as simple as possible and hosts a low noise first order pre- amplifier/pre-filtering stage that provides a 46dB gain in the bandwidth 800Hz􀀀7:2kHz and a 16-bit 3rd order sigma delta modulator. A highly selective band-pass filter is implemented into the digital domain, incorporated in the decimator block of the sigma-delta converter; in this way it is possible to reduce total area (which is 0:4mm2 for a single input channel) and power consumption (250μW, single channel) in the integrated, implantable module. Simulation results prove the capability of the proposed system to record signals whose magnitude is in the order of tens of microvolts thanks to the low Input Referred Noise (IRN) of 2:4μVrms of the input stage.

References

  1. Dhillon, G. S. and Horch, K. W. (2005). Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans. on Neural Systems and Rehabilitation Engineering, pages 468-472.
  2. Guo, H., Champion, C., Rector, D. M., and La Rue, G. (2004). A low-power low-noise sensor ic. 2004 IEEE Workshop on Microelectronics and Electronic Devices, pages 60-63.
  3. Harrison, R. R. (2007). A versatile integrated circuit for the acquisition of biopotentials. Custom Integrated Circuits Conference, pages 115-122.
  4. Harrison, R. R. and Charles, C. (2003). A low-power low-noise cmos amplifier for neural recording applications. IEEE Journal of Solid-State Circuits, 38:958- 965.
  5. Lee, S. Y. and Lee, S. C. (2005). An implantable wireless bidirectional communication microstimulator for neuromuscolar stimulation. IEEE Trans. Circuit System, 52:2526-2538.
  6. Limnuson, K., Tyler, D. J., and Mohseni, P. (2009). Integrated electronics for peripheral nerve recording and signal processing. 31st Annual International Conference of the IEEE EMBS, pages 1639-1642.
  7. Liu, W., Vichienchom, K., Clements, M., DeMarco, S., Hughes, C., McGucken, E., Humayun, M., De Juan, E., Weiland, J., and Greenberg, R. (2000). A neurostimulus chip with telemetry unit for retinal prosthetic device. IEEE Journal of Solid-State Circuits, 35:1487-1497.
  8. Loi, D., Carboni, C., Angius, G., Angotzi, G., Barbaro, M., Raffo, L., Raspopovic, S., and Navarro, X. (2011). Peripheral neural activity recording and stimulation system. IEEE Trans. Biomedical Circuit System, 5:368- 379.
  9. Malcovati, P., Brigati, S., Francesconi, F., Maloberti, F., Cusinato, P., and Baschirotto, A. (2003). Behavioral modeling of switched-capacitor sigmadelta modulators. IEEE Trans. on Circuits and Systems-I, 5:352- 364.
  10. Micera, S., Citi, L., Rigosa, J., Carpaneto, J., Raspopovic, S., Di Pino, G., Rossini, L., Yoshida, K., Denaro, L., Dario, P., and Rossini, P. M. (2010). Decoding information from neural signals recorded using intraneural electrodes: Toward the development of a neurocontrolled hand prosthesis. Proceedings of the IEEE, 98(3):407-417.
  11. Pereira, E., Green, A., and Nandi, D. (2007). Deep brain stimulation: indications and evidence. Expert Rev Med Devices, 4:591-603.
  12. Razavi, B. (2001). Design of analog cmos integrated circuits. McGRAW HILL International Edition.
  13. Rieger, R., Taylor, J., Demosthenous, A., Donaldson, N., and Langlois, P. J. (2003). Design of a low-noise preamplifier for nerve cuff electrode recording. IEEE Journal of Solid-State Circuits, 38(8):1373-1379.
  14. Schreier, R. and Gabor C., T. (2001). Understanding delta-sigma data converters. IEEE Press/WileyInterscience.
  15. Von Arx, J. and Najafi, K. (1999). A wireless single-chip telemetry-powered neural stimulation system. IEEE Journal of Solid-State Circuits, pages 214-215.
  16. Yoshida, K. and Stein, R. B. (1999). Characterization of signals and noise rejection with bipolar longitudinal intrafascicular electrodes. IEEE Trans Biomed Eng, 46:226-234.
  17. Zare-Hoseini, H., Kale, I., and Shoaei, O. (2005). Modeling of switched-capacitor deltasigma modulators in simulink. IEEE Trans. on Instrumental and Measurement, 54:1646-1654.
Download


Paper Citation


in Harvard Style

Carboni C., Loi D. and Barbaro M. (2012). A FRONT-END STAGE FOR NEURAL SIGNAL RECORDING BASED ON A SIGMA-DELTA MODULATOR . In Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2012) ISBN 978-989-8425-91-1, pages 207-212. DOI: 10.5220/0003782802070212


in Bibtex Style

@conference{biodevices12,
author={Caterina Carboni and Daniela Loi and Massimo Barbaro},
title={A FRONT-END STAGE FOR NEURAL SIGNAL RECORDING BASED ON A SIGMA-DELTA MODULATOR},
booktitle={Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2012)},
year={2012},
pages={207-212},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003782802070212},
isbn={978-989-8425-91-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2012)
TI - A FRONT-END STAGE FOR NEURAL SIGNAL RECORDING BASED ON A SIGMA-DELTA MODULATOR
SN - 978-989-8425-91-1
AU - Carboni C.
AU - Loi D.
AU - Barbaro M.
PY - 2012
SP - 207
EP - 212
DO - 10.5220/0003782802070212