MULTI-LEVEL DYNAMIC MODELING IN BIOLOGICAL SYSTEMS - Application of Hybrid Petri Nets to Network Simulation

Rafael S. Costa, Daniel Machado, A. R. Neves, Susana Vinga

Abstract

The recent progress in the high-throughput experimental technologies allows the reconstruction of many biological networks and to evaluate changes in proteins, genes and metabolites levels in different conditions. On the other hand, computational models, when complemented with regulatory information, can be used to predict the phenotype of an organism under different genetic and environmental conditions. These computational methods can be used for example to identify molecular targets capable of inactivating a bacterium and to understand its virulence factors. This work proposes a hybrid metabolic-regulatory Petri net approach that is based on the combination of approximate enzyme-kinetic rate laws and Petri nets. A prototypic network model is used as a test-case to illustrate the application of these concepts in Systems Biology.

References

  1. Bettenbrock, K., Fischer, S., Kremling, A., Jahreis, K., Sauter, T., and Gilles, E. (2006). A quantitative approach to catabolite repression in Escherichia coli. Journal of Biological Chemistry, 281:2578.
  2. Chaouiya, C., Remy, E., Ruet, P., and Thieffry, D. (2004). Qualitative modelling of genetic networks: From logical regulatory graphs to standard Petri nets. Applications and Theory of Petri Nets 2004, pages 137-156.
  3. Chassagnole, C., Noisommit-Rizzi, N., Schmid, J., Mauch, K., and Reuss, M. (2002). Dynamic modeling of the central carbon metabolism of Escherichia coli. Biotechnology and Bioengineering, 79(1):53-73.
  4. Chen, L., Qi-Wei, G., Nakata, M., Matsuno, H., and Miyano, S. (2007). Modelling and simulation of signal transductions in an apoptosis pathway by using timed Petri nets. Journal of biosciences, 32(1):113- 127.
  5. Chen, M. and Hofestadt, R. (2003). Quantitative petri net model of gene regulated metabolic networks in the cell. In silico biology, 3(3):347-365.
  6. Costa, R., Machado, D., Rocha, I., et al. (2010). Hybrid dynamic modeling of Escherichia coli central metabolic network combining Michaelis-Menten and approximate kinetic equations. Biosystems, 100(2):150-157.
  7. Covert, M., Xiao, N., Chen, T., and Karr, J. (2008). Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. Bioinformatics, 24(18):2044-2050.
  8. Di Ventura, B., Lemerle, C., Michalodimitrakis, K., and Serrano, L. (2006). From in vivo to in silico biology and back. Nature, 443(7111):527-533.
  9. Doi, A., Fujita, S., Matsuno, H., Nagasaki, M., and Miyano, S. (2004). Constructing biological pathway models with hybrid functional petri nets. In silico biology, 4(3):371-291.
  10. Hassane, A. and David, R. (1998). Continuous and hybrid Petri nets. Journal of Circuits Systems and Computers, 8:159-188.
  11. Henry, C., DeJongh, M., Best, A., Frybarger, P., Linsay, B., and Stevens, R. (2010). High-throughput generation, optimization and analysis of genome-scale metabolic models. Nature biotechnology, 28(9):977-982.
  12. Hoffmann, A., Levchenko, A., Scott, M., and Baltimore, D. (2002). The ikb-nf-kb signaling module: temporal control and selective gene activation. Science, 298(5596):1241.
  13. Kitano, H. (2002). Systems biology: a brief overview. Science, 295(5560):1662.
  14. Klipp, E. (2007). Modelling dynamic processes in yeast. Yeast, 24(11):943-959.
  15. Kotte, O., Zaugg, J., and Heinemann, M. (2010). Bacterial adaptation through distributed sensing of metabolic fluxes. Molecular Systems Biology, 6(1).
  16. Lee, D., Saha, R., Yusufi, F., Park, W., and Karimi, I. (2009). Web-based applications for building, managing and analysing kinetic models of biological systems. Briefings in bioinformatics, 10(1):65-74.
  17. Lee, S., Lee, D., and Kim, T. (2005). Systems biotechnology for strain improvement. TRENDS in Biotechnology, 23(7):349-358.
  18. Lee, T., Rinaldi, N., Robert, F., Odom, D., Bar-Joseph, Z., Gerber, G., Hannett, N., Harbison, C., Thompson, C., Simon, I., et al. (2002). Transcriptional regulatory networks in Saccharomyces cerevisiae. Science, 298(5594):799.
  19. Nielsen, J. and Olsson, L. (2002). An expanded role for microbial physiology in metabolic engineering and functional genomics: Moving towards systems biology1. FEMS yeast research, 2(2):175-181.
  20. Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H., and Kanehisa, M. (1999). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic acids research, 27(1):29.
  21. Park, J., Lee, K., Kim, T., and Lee, S. (2007). Metabolic engineering of Escherichia coli for the production of l-valine based on transcriptome analysis and in silico gene knockout simulation. Proceedings of the national academy of sciences of the USA, 104(19):7797.
  22. Patil, K. and Nielsen, J. (2005). Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proceedings of the national academy of sciences of the USA, 102(8):2685.
  23. Price, N., Papin, J., Schilling, C., and Palsson, B. (2003). Genome-scale microbial in silico models: the constraints-based approach. TRENDS in Biotechnology, 21(4):162-169.
  24. Rohr, C., Marwan, W., and Heiner, M. (2010). Snoopy - a unifying Petri net framework to investigate biomolecular networks. Bioinformatics, 26(7):974.
  25. Smallbone, K., Simeonidis, E., Broomhead, D., and Kell, D. (2007). Something from nothing- bridging the gap between constraint-based and kinetic modelling. Febs Journal, 274(21):5576-5585.
  26. Tenazinha, N. and Vinga, S. (2011). A survey on methods for modeling and analyzing integrated biological networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 8(4):943-958.
  27. Tomita, M., Hashimoto, K., Takahashi, K., Shimizu, T., Matsuzaki, Y., Miyoshi, F., Saito, K., Tanida, S., Yugi, K., Venter, J., et al. (1999). E-CELL: software environment for whole-cell simulation. Bioinformatics, 15(1):72-84.
  28. Usuda, Y., Nishio, Y., Iwatani, S., Van Dien, S., Imaizumi, A., Shimbo, K., Kageyama, N., Iwahata, D., Miyano, H., and Matsui, K. (2010). Dynamic modeling of Escherichia coli metabolic and regulatory systems for amino-acid production. Journal of biotechnology, 147(1):17-30.
  29. Visser, D. and Heijnen, J. (2003). Dynamic simulation and metabolic re-design of a branched pathway using linlog kinetics. Metabolic Engineering, 5(3):164-176.
  30. Zevedei-Oancea, I., Schuster, S., et al. (2003). Topological analysis of metabolic networks based on Petri net theory. In silico biology, 3(3):323-345.
  31. Zhu, J., Zhang, B., and Schadt, E. (2008). A systems biology approach to drug discovery. Advances in genetics, 60:603-635.
Download


Paper Citation


in Harvard Style

S. Costa R., Machado D., R. Neves A. and Vinga S. (2012). MULTI-LEVEL DYNAMIC MODELING IN BIOLOGICAL SYSTEMS - Application of Hybrid Petri Nets to Network Simulation . In Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2012) ISBN 978-989-8425-90-4, pages 317-321. DOI: 10.5220/0003785503170321


in Bibtex Style

@conference{bioinformatics12,
author={Rafael S. Costa and Daniel Machado and A. R. Neves and Susana Vinga},
title={MULTI-LEVEL DYNAMIC MODELING IN BIOLOGICAL SYSTEMS - Application of Hybrid Petri Nets to Network Simulation},
booktitle={Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2012)},
year={2012},
pages={317-321},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003785503170321},
isbn={978-989-8425-90-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2012)
TI - MULTI-LEVEL DYNAMIC MODELING IN BIOLOGICAL SYSTEMS - Application of Hybrid Petri Nets to Network Simulation
SN - 978-989-8425-90-4
AU - S. Costa R.
AU - Machado D.
AU - R. Neves A.
AU - Vinga S.
PY - 2012
SP - 317
EP - 321
DO - 10.5220/0003785503170321