MULTI-SOURCE ENERGY HARVESTING POWER GENERATORS FOR INSTRUMENTED IMPLANTS - Towards the Development of a Smart Hip Prosthesis

M. Soares dos Santos, Jorge A. F. Ferreira, A. Ramos, Ricardo Pascoal, Raul Morais dos Santos, Nuno M. Silva, José A. O. Simões, M. J. C. S. Reis, Camila N. Boeri, António Festas, Paulo M. Santos

Abstract

Very few developments have been done to provide electric power supply of instrumented hip prosthesis. Actually, vibration-powered generators are the most appropriate mechanisms for this kind of application’s environment. This paper describes the first attempt to develop the concept of energy harvesting from multiple energy sources applied in the same hip implant. Exploiting the potential of the three angular movements over the femoral component, namely in the abduction-adduction, flexion-extension and inward-outward rotation axes, three inboard vibration-based mechanisms were developed in order to ensure electric power supply from multiple energy sources. A total of 53.7 μJ/s was harvested by a translation movement-based electromagnetic energy generator when a sinusoidal function with an amplitude of 40 mm and a frequency of 4 Hz was applied. A rotation movement-based electromagnetic energy generator has harvested 0.77 μJ/s when a sinusoidal function with an amplitude of 60º and a frequency of 2.5 Hz was used. The piezoelectric energy harvester has achieved 0.6 μJ/s with the application of a sinusoidal function with an amplitude of 200 N and a frequency of 4 Hz. Besides, its ability of being fully autonomous, operating without expiry and maintenance, while offering safety during its entire lifetime are relevant features. This paper should provide the basis for the development of smart hip prosthesis with the ability to fix the aseptic implant loosening problem.

References

  1. Alpuim, P., Filonovich, S., Costa, C., Rocha, P., Vasilevskiy, M., Lanceros-Mendez, S., Frias, C., Marques, A., Soares, R., and Costa, C. (2008). Fabrication of a strain sensor for bone implant failure detection based on piezoresistive doped nanocrystalline silicon. Journal of Non-Crystalline Solids, 354:2585-2589.
  2. Beeby, S., Tudor, M., and White, N. (2006). Energy harvesting vibration sources for microsystems applications. Measurement Science and Technology, 17:R175-R195.
  3. Beeby, S. and White, N. (2010). Energy Harvesting for Autonomous Systems. Artech House, Norwood, MA, EUA.
  4. Carmo, J., Ribeiro, J., Silva, M., Goncalves, L., and Correia, J. (2010). Thermoelectric generator and solid-state battery for stand-alone microsystems. Journal of Micromechanics and Microengineering, 20:1-8.
  5. Cook-Chennault, K., Thambi, N., and Sastry, A. (2008). Powering mems portable devices a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Materials and Structures, 17:1-33.
  6. Damm, P., Graichen, F., Rohlmann, A., Bender, A., and Bergmann, G. (2010). Total hip joint prosthesis for in vivo measurement of forces and moments. Medical Engineering & Physics, 32:95-100.
  7. duToit, N., Wardle, B., and Kim, S. (2005). Design considerations for mems-scale piezoelectric mechanical vibration energy harvesters. Integrated Ferroelectrics, 71:121-160.
  8. Frias, C., Reis, J., e Silva, F. C., Potes, J., Simo˜es, J., and Marques, A. (2010). Polymeric piezoelectric actuator substrate for osteoblast mechanical stimulation. Journal of Biomechanics, 43:1061-1066.
  9. Gilbert, J. and Balouchi, F. (2008). Comparison of energy harvesting systems for wireless sensor networks. International Journal of Automation and Computing, 5(4):334-347.
  10. Graichen, F., Bergmann, G., and Rohlmann, A. (1999). Hip endoprosthesis for in vivo measurement of joint force and temperature. Journal of Biomechanics, 32:1113-1117.
  11. Heinlein, B., Graichen, F., Bender, A., Rohlmann, A., and Bergmann, G. (2007). Design, calibration and pre-clinical testing of an instrumented tibial tray. Journal of Biomechanics, 40:S4-S10.
  12. Heinlein, B., Kutzner, I., Graichen, F., Bender, A., Rohlmann, A., Halder, A., Beier, A., and Bergmann, G. (2009). ESB clinical biomechanics award 2008: Complete data of total knee replacement loading for level walking and stair climbing measured in vivo with a follow-up of 610 months. Clinical Biomechanics, 24:315-326.
  13. Ida, N. (2004). Engineering Electromagnetics. Springer, New York, 2nd edition.
  14. Kalogirou, S. (2000). Applications of artificial neural-networks for energy systems. Applied Energy, 67:17-35.
  15. Kazmierski, T. and Beeby, S. (2011). Energy Harvesting Systems - Principles, Modeling and Applications. Springer, New York, EUA.
  16. Kerzenmacher, S., Ducrée, J., Zengerle, R., and von Stetten, F. (2008). Energy harvesting by implantable abiotically catalyzed glucose fuel cells. Journal of Power Sources, 182:1-17.
  17. Kurtz, S., Ong, K., Lau, E., Mowat, F., and Halpern, M. (2007). Projections of primary and revision hip and knee arthroplasty in the united states from 2005 to 2030. The Journal of Bone and Joint Surgery (American), 89(4):780-785.
  18. Lu, M., Zhang, G., Fu, K., Yu, G., Su, D., and Hu, J. (2011). Gallium nitride schottky betavoltaic nuclear batteries. Energy Conversion and Management, 52:1955-1958.
  19. Marcelli, E., Scalambraa, F., Cercenelli, L., and Plicchi, G. (2007). A new hermetic antenna for wireless transmission systems of implantable medical devices. Medical Engineering & Physics, 29:140-147.
  20. Marschner, U., Grtz, H., Jettkant, B., Ruwischa, D., Woldt, G., Fischer, W., and Clasbrummel, B. (2009). Integration of a wireless lock-in measurement of hip prosthesis vibrations for loosening detection. Sensors and Actuators A: Physical, 156:145-154.
  21. Morais, R., Frias, C., Silva, N., Azevedo, J., Seroˆdio, C., Silva, P., Ferreira, J., Simo˜es, J., and Reis, M. (2009). An activation circuit for battery-powered biomedical implantable systems. Sensors and Actuators A: Physical, 156:229-236.
  22. Morais, R., Silva, N., Santos, P., Frias, C., Ferreira, J., Ramos, A., Simo˜es, J., Baptista, J., and Reis, M. (2010). Permanent magnet vibration power generator as an embedded mechanism for smart hip prosthesis. Procedia Engineering, 5:766-769.
  23. Morais, R., Silva, N., Santos, P., Frias, C., Ferreira, J., Ramos, A., Simo˜es, J., Baptista, J., and Reis, M. (2011). Double permanent magnet vibration power generator for smart hip prosthesis. Sensors andActuatorsA: Physical, In Press, Corrected Proof.
  24. Morlock, M., Schneider, E., Bluhm, A., Vollmer, M., Bergmann, G., Müller, V., and Honl, M. (2001). Duration and frequency of every day activities in total hip patients. Journal of Biomechanics, 34:873-881.
  25. Priya, S. and Inman, D. (2009). Energy Harvesting Technologies. Springer, New York, USA.
  26. Puers, R., Catrysse, M., Vandevoorde, G., Collier, R., Louridas, E., Burny, F., Donkerwolcke, M., and Moulart, F. (2000). A telemetry system for the detection of hip prosthesis loosening by vibration analysis. Sensors and Actuators A: Physical, 85:42-47.
  27. Renno, J., Daqaq, M., and Inman, D. (2009). On the optimal energy harvesting from a vibration source. Journal of Sound and Vibration, 320:386-405.
  28. Rohlmann, A., Graichen, F., Bender, A., Kayser, R., and Bergmann, G. (2008). Loads on a telemeterized vertebral body replacement measured in three patients within the first postoperative month. Clinical Biomechanics, 23:147-158.
  29. Rowlands, A., Duck, F., and Cunningham, J. (2008). Bone vibration measurement using ultrasound: Application to detection of hip prosthesis loosening. Medical Engineering & Physics, 30:278-284.
  30. Santos, M., Rolo, D., Ferreira, J., Ramos, A., and Boeri, C. (2011). Fuzzy control of a servopneumatic wear simulator of acetabular components of hip prosthesis - implementing nonlinear controllers for the angular movement of three coupled. In Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics, pages 155-160.
  31. von Büren, T., Mitcheson, P., Green, T., Yeatman, E., Holmes, A., and Tröster, G. (2006). Optimization of inertial micropower generators for human walking motion. IEEE Sensors Journal, 6(1):28-38.
  32. Wei, X. and Liu, J. (2008). Power sources and electrical recharging strategies for implantable medical devices. Frontiers of Energy and Power Engineering in China, 2(1):1-13.
  33. Westerhoff, P., Graichen, F., Bender, A., Rohlmann, A., and Bergmann, G. (2009). An instrumented implant for in vivo measurement of contact forces and contact moments in the shoulder joint. Medical Engineering & Physics, 31:207-213.
  34. Whittle, M. (2007). Gait analysis - An introduction. Butterworth Heinemann Elsevier, 4th edition.
  35. Winter, D. (2009). Biomechanics and motor control of human movement. John Wiley & Sons, 4th edition.
  36. Zhu, D., Tudor, M., and Beeby, S. (2010). Strategies for increasing the operating frequency range of vibration energy harvesters: a review. Measurement Science and Technology, 21:1-29.
Download


Paper Citation


in Harvard Style

Soares dos Santos M., A. F. Ferreira J., Ramos A., Pascoal R., Morais dos Santos R., M. Silva N., A. O. Simões J., J. C. S. Reis M., N. Boeri C., Festas A. and M. Santos P. (2012). MULTI-SOURCE ENERGY HARVESTING POWER GENERATORS FOR INSTRUMENTED IMPLANTS - Towards the Development of a Smart Hip Prosthesis . In Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2012) ISBN 978-989-8425-91-1, pages 71-81. DOI: 10.5220/0003792100710081


in Bibtex Style

@conference{biodevices12,
author={M. Soares dos Santos and Jorge A. F. Ferreira and A. Ramos and Ricardo Pascoal and Raul Morais dos Santos and Nuno M. Silva and José A. O. Simões and M. J. C. S. Reis and Camila N. Boeri and António Festas and Paulo M. Santos},
title={MULTI-SOURCE ENERGY HARVESTING POWER GENERATORS FOR INSTRUMENTED IMPLANTS - Towards the Development of a Smart Hip Prosthesis},
booktitle={Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2012)},
year={2012},
pages={71-81},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003792100710081},
isbn={978-989-8425-91-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2012)
TI - MULTI-SOURCE ENERGY HARVESTING POWER GENERATORS FOR INSTRUMENTED IMPLANTS - Towards the Development of a Smart Hip Prosthesis
SN - 978-989-8425-91-1
AU - Soares dos Santos M.
AU - A. F. Ferreira J.
AU - Ramos A.
AU - Pascoal R.
AU - Morais dos Santos R.
AU - M. Silva N.
AU - A. O. Simões J.
AU - J. C. S. Reis M.
AU - N. Boeri C.
AU - Festas A.
AU - M. Santos P.
PY - 2012
SP - 71
EP - 81
DO - 10.5220/0003792100710081