Pedro Anacleto, Evin Gultepe, David H. Gracias, Paulo M. Mendes


The miniaturization of medical devices allows numerous new solutions in medicine including implantable devices that can diagnose, treat and monitor patients. Drug delivery systems have the potential to drastically change the drug administration and hence to improve their therapeutic efficiency. These devices can be fabricated by combining self-folding methods with the conventional multi-layer lithography. This combined lithography technique allows precise patterning of two dimensional (2D) templates that can transform into three dimensional (3D) structures with higher surface area to volume ratios. The same technique allows the incorporation of small antennas with devices and enabling wireless capabilities. An efficient wireless link between an external reader and the implanted device provides a remarkable advantage to both patients and caregivers including greater patient ease of movement, continuous data feeds, higher quality and reliability of data reporting. This paper proposes a system which is composed of a 500x500μm2 square loop antenna with 5GHz operating frequency, embedded on a SU-8 cubic container suitable for small implantable medical devices.


  1. Christina L. Randall, Evin Gultepe, David H. Gracias. 2011. Self-folding devices and materials for biomedical applications. Trends in Biotechnology.
  2. Yao-Joe Yang, Yu-Jie Huang, Hsin-Hung Liao, Tao Wang, Pen-Li Huang, Chii-Wan Lin, Yao-Hong Wang, Shey-shi Lu. 2009. A release-on-demand wireless CMOS drug delivery SoC based on electrothermal activation. IEEE International SolidState Circuits Conference - Digest of Technical Papers. 288-289.
  3. Rahimi, Somayyeh, Sarraf, Elie H, Wong, Gregory K., Takahata, Kenichi. 2011. Inplantable drug delivery device using frequency-controlled wireless hydrogel microvalves. Biomedical Microdevices. Vol. 13, 2. 267-277
  4. Ahmadi, M. M, Jullien, G. A. 2009. A WirelessImplantable Microsystem for Continuous Blood Glucose Monitoring. IEEE Transactions on Biomedical Circuits and Systems. Vol. 3, 3.
  5. Peng Cong, Chaimanonart, N., Ko, W. H., Young, D. J. 2009. A Wireless and Batteryless 10-Bit Implantable Blood Pressure Sensing Microsystem With Adaptive RF Powering for Real-Time Laboratory Mice Monitoring. IEEE Journal of Solid-State Circuits. Vol. 44, 12. 3631 - 3644
  6. Xiuquan Fu, Weihong Chen, Shuming Ye, Yuewen Tu, Yawei Tang, Dingli Li, Hang Chen, and Kai Jiang. 2011. A Wireless Implantable Sensor Network System for In Vivo Monitoring of Physiological Signals. IEEE Transactions on information technology in Biomedicine. Vol. 15, 4.
  7. Kensall D. Wise, Amir M. Sodagar, Ying Yao, Mayurachat Ning Gulari, Gayatri E. Perlin, Khalil Najafi. 2008. Microelectrodes, Microelectronics, and Implantable Neural Microsystems. Proceedings of the IEEE. Vol. 96, 7. 1184 - 1202
  8. Barbé, J. Bartlett, L. Kong, K. Finnie, H. Q. Lin, M. Larkin, S. Calleja, A. Bush, G. Calleja. 2004. Silica Particles: A Novel Drug Delivery System. Advanced Materials. Vol. 16, 21. 1959 - 1966
  9. S. Smith, T. B. Tang, J. G. Terry, J. T. M. Stevenson, B. W. Flynn, H. M. Reekie, A. F. Murray, A. M. Gundlach, D. Renshaw, B. Dhillon, A. Ohtori, Y. Inoue, A. J. Walton. 2007. Development of a miniaturised drug delivery system with wireless power transfer and communication. IET Nanobiotechnology. Vol. 1, 5. 80 - 86
  10. Christina L. Randallb, Timothy G. Leonga, Noy Bassika, David H. Gracias. 2007. 3D lithographically fabricated nanoliter containers for drug delivery. Advanced Drug Delivery Reviews. Vol. 59, 15. 1547-1561
  11. S. Smith, T. B. Tang, J. T. M. Stevenson, B. W. Flynn, H. M. Reekie, A. F. Murray, A. M. Gundlach, D. Renshaw, B. Dhillon, A. Ohtori, Y. Inoue, A. J. Walton. 2006. Miniaturized Drug Delivery System With Wireless Power Tranfer and Communication. The Institution of Engineering and Technology Seminar on MEMS Sensors and Actuators.
  12. Anum Azam, Kate E. Laflin, Mustapha Jamal, Rohan Fernandes, David H. Gracias. 2010. Self-folding micropatterned polymeric containers. Biomed Microdevices. Vol. 13. 51 - 58
  13. Qiang Fang, Shuenn-Yuh Lee, Permana, H., Ghorbani, K., Cosic, I. 2011. Developing a Wireless Implantable Body Sensor Network in MICS Band. IEEE Transactions on Information Technologyin Biomedicine. Vol. 15, 4. 567 - 576
  14. Olivo, J., Carrara, S., De Micheli, G. 2011. Energy Harvesting and Remote Powering for Implantable Biosensors. IEEE Sensors Journal.Vol. 11, 7. 1573 - 1586
  15. Hamid Jabbar, Young. S. Song, Taikyeong Ted. Jeong. 2010. RF Energy Harvesting System and Circuits for Charging of Mobile Devices. IEEE Transactions on Consumer Electronics. Vol. 56, No. 1.
  16. Hiroshi Nishimoto, Yoshihiro Kawahara, Tohru Asami. 2010. Prototype Implementation of Ambient RF Energy Harvesting Wireless Sensor Networks. IEEE Sensors Conference
  17. Fu-Jhuan Huang, Chien-Ming Lee, Chia-Lin Chang, Liang-Kai Chen, Tzong-Chee Yo, Ching-Hsing Luo. 2011. Rectenna Application of Miniaturized Implantable Antenna Design for Triple-Band Biotelemetry Communication. IEEE Transactions on Antennas and Propagation. Vol. 59, 7. 2646 - 2653
  18. Gabriel C., Gabriel S. 1996. Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies.

Paper Citation

in Harvard Style

Anacleto P., Gultepe E., H. Gracias D. and M. Mendes P. (2012). ENERGY HARVESTING FOR SELF-FOLDING MICRO DEVICES . In Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2012) ISBN 978-989-8425-91-1, pages 364-367. DOI: 10.5220/0003793103640367

in Bibtex Style

author={Pedro Anacleto and Evin Gultepe and David H. Gracias and Paulo M. Mendes},
booktitle={Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2012)},

in EndNote Style

JO - Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2012)
SN - 978-989-8425-91-1
AU - Anacleto P.
AU - Gultepe E.
AU - H. Gracias D.
AU - M. Mendes P.
PY - 2012
SP - 364
EP - 367
DO - 10.5220/0003793103640367