ONLINE SUNFLICKER REMOVAL USING DYNAMIC TEXTURE PREDICTION

A. S. M. Shihavuddin, Nuno Gracias, Rafael Garcia

Abstract

An underwater vision system operating in shallow water faces unique challenges, which often degrade the quality of the acquired data. One of these challenges is the sunflicker effect, created from refracted sunlight casting fast moving patterns on the seafloor. Surprisingly few previous works exist to address this topic. The best performing available method mitigates the sunflickering effect using offline motion compensated filtering. In the present work, we propose an online sunflicker removal method targeted at producing better registration accuracy. The illumination field of the sunflicker effect is considered as a dynamic texture, since it produces repetitive dynamic patterns. With that assumption, the dynamic model of the sunflicker is learned from the registered illumination fields of the previous frames and is used for predicting that of the next coming frame. Such prediction allows for removing the sunflicker patterns from the new frame and successfully register it against previous frames. Comparative results are presented using challenging test sequences which illustrate the better performance of the approach against the closest related method in the literature.

References

  1. Cand├Ęs, E. J., Li, X., Ma, Y., and Wright, J. (2009). Robust principal component analysis? CoRR, abs/0912.3599.
  2. Doretto, G., Chiuso, A., Wu, Y. N., and Soatto, S. (2003). Dynamic textures. International Journal of Computer Vision, 51:91-109.
  3. Farid, H. (2001). Blind inverse gamma correction. Image Processing, IEEE Transactions on, 10(10):1428 -1433.
  4. Farid, H. and Popescu, A. C. (2001). Blind removal of image non-linearities. Computer Vision, IEEE International Conference on, 1:76.
  5. Gracias, N., Negahdaripour, S., Neumann, L., Prados, R., and Garcia, R. (2008). A motion compensated filtering approach to remove sunlight flicker in shallow water images. In OCEANS 2008.
  6. Harris, C. and Stephens, M. (1988). A combined corner and edge detector. In Fourth Alvey Vision Conference, Manchester, UK, pages 147 -151.
  7. Kovesi, P. D. (2009). Matlab and octave functions for computer vision and image processing. School of Computer Science Software Engineering.
  8. Lowe, D. G. (2004). Distinctive image features from scaleinvariant keypoints. International Journal of Computer Vision, 60:91-110.
  9. Matsushita, Y., Nishino, K., Ikeuchi, K., and Sakauchi, M. (2002). Shadow elimination for robust video surveillance. Motion and Video Computing, IEEE Workshop on, page 15.
  10. Sarel, B. and Irani, M. (2004). Separating transparent layers through layer information exchange. In Pajdla, T. and Matas, J., editors, Computer Vision - ECCV 2004, volume 3024 of Lecture Notes in Computer Science, pages 328-341. Springer Berlin / Heidelberg.
  11. Schechner, Y. and Karpel, N. (2004a). Attenuating natural flicker patterns. In IEEE TECHNO-OCEAN, 04, volume 3, pages 1262 -1268.
  12. Schechner, Y. and Karpel, N. (2004b). Recovering scenes by polarization analysis. In OCEANS 7804. MTTS/IEEE TECHNO-OCEAN 7804, volume 3, pages 1255 -1261 Vol.3.
  13. Ukrainitz, Y. and Irani, M. (2006). Aligning sequences and actions by maximizing space-time correlations. In Leonardis, A., Bischof, H., and Pinz, A., editors, Computer Vision ECCV 2006, volume 3953 of Lecture Notes in Computer Science, pages 538-550. Springer Berlin / Heidelberg.
  14. Weiss, Y. (2001). Deriving intrinsic images from image sequences. In Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on, volume 2, pages 68 -75.
  15. Zhao, F., Huang, Q., and Gao, W. (2006). Image matching by normalized cross-correlation. In Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference on, volume 2.
Download


Paper Citation


in Harvard Style

S. M. Shihavuddin A., Gracias N. and Garcia R. (2012). ONLINE SUNFLICKER REMOVAL USING DYNAMIC TEXTURE PREDICTION . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2012) ISBN 978-989-8565-03-7, pages 161-167. DOI: 10.5220/0003811901610167


in Bibtex Style

@conference{visapp12,
author={A. S. M. Shihavuddin and Nuno Gracias and Rafael Garcia},
title={ONLINE SUNFLICKER REMOVAL USING DYNAMIC TEXTURE PREDICTION},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2012)},
year={2012},
pages={161-167},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003811901610167},
isbn={978-989-8565-03-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2012)
TI - ONLINE SUNFLICKER REMOVAL USING DYNAMIC TEXTURE PREDICTION
SN - 978-989-8565-03-7
AU - S. M. Shihavuddin A.
AU - Gracias N.
AU - Garcia R.
PY - 2012
SP - 161
EP - 167
DO - 10.5220/0003811901610167