EVALUATION OF A BUNDLING TECHNIQUE FOR PARALLEL COORDINATES

Julian Heinrich, Yuan Luo, Arthur E. Kirkpatrick, Daniel Weiskopf

Abstract

We present a controlled user study evaluating the effectiveness of bundled curve representations in parallel coordinates plots. Replacing the traditional C0 polygonal lines by C1 continuous piecewise Bézier curves makes it easier to visually trace data points through each coordinate axis. The resulting B´ezier curves can then be bundled to visualize data with given cluster structures. Our results show that: 1) compared to polygonal lines, bundled curves are equally capable of revealing correlations between neighboring data attributes; 2) the geometric cues of bundles can be effective in displaying cluster information.

References

  1. Artero, A. O., de Oliveira, M. C. F., and Levkowitz, H. (2004). Uncovering clusters in crowded parallel coordinates visualizations. In IEEE Symposium on Information Visualization, pages 81-88. IEEE Computer Society.
  2. Berthold, M. R. and Hall, L. O. (2003). Visualizing fuzzy points in parallel coordinates. IEEE Transactions on Fuzzy Systems, 11:369-374.
  3. Caat, M. T. and Maurits, N. M. (2007). Design and evaluation of tiled parallel coordinate visualization of multichannel EEG data. IEEE Transactions on Visualization and Computer Graphics, 13(1):70-79.
  4. Cook, D. and Swayne, D. F. (2003). Interactive and Dynamic Graphics for Data Analysis: With Examples Using R and GGobi. Springer.
  5. Fua, Y.-H., Ward, M. O., and Rundensteiner, E. A. (1999). Hierarchical parallel coordinates for exploration of large datasets. In IEEE Visualization, pages 43-50. IEEE Computer Society.
  6. Graham, M. and Kennedy, J. (2003). Using curves to enhance parallel coordinate visualisations. In International Conference on Information Visualization (IV), pages 10-16. IEEE Computer Society.
  7. Harrower, M. A. and Brewer, C. A. (2003). ColorBrewer.org: an online tool for selecting color schemes for maps. The Cartographic Journal, 40(1):27-37.
  8. Heinrich, J., Bachthaler, S., and Weiskopf, D. (2011a). Progressive splatting of continuous scatterplots and parallel coordinates. Computer Graphics Forum, 30(3):653-662.
  9. Heinrich, J., Luo, Y., Kirkpatrick, A. E., Zhang, H., and Weiskopf, D. (2011b). Evaluation of a bundling technique for parallel coordinates. Technical Report Computer Science TR-2011-08, Visualization Research Center, University of Stuttgart.
  10. Heinrich, J. and Weiskopf, D. (2009). Continuous parallel coordinates. IEEE Transactions on Visualization and Computer Graphics, 15(6):1531-1538.
  11. Henley, M., Hagen, M., and Bergeron, R. D. (2007). Evaluating two visualization techniques for genome comparison. In International Conference on Information Visualization (IV), pages 551-558. IEEE Computer Society.
  12. Holten, D. (2006). Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data. IEEE Transactions on Visualization and Computer Graphics, 12(5):741-748.
  13. Holten, D. and van Wijk, J. J. (2010). Evaluation of cluster identification performance for different PCP variants. Computer Graphics Forum, 29(3):793-802.
  14. Inselberg, A. (1985). The plane with parallel coordinates. The Visual Computer, 1(2):69-92.
  15. Inselberg, A. (2009). Parallel Coordinates: Visual Multidimensional Geometry and Its Applications. Springer, New York.
  16. Inselberg, A. and Dimsdale, B. (1990). Parallel coordinates: A tool for visualizing multi-dimensional geometry. In IEEE Visualization, pages 361-378. IEEE Computer Society.
  17. Jain, A. K. and Dubes, R. C. (1988). Algorithms for Clustering Data. Prentice-Hall, Upper Saddle River, NJ.
  18. Johansson, J., Forsell, C., Lind, M., and Cooper, M. (2008). Perceiving patterns in parallel coordinates: determining thresholds for identification of relationships. Information Visualization, 7(2):152-162.
  19. Johansson, J., Ljung, P., Jern, M., and Cooper, M. (2005). Revealing structure within clustered parallel coordinates displays. In IEEE Symposium on Information Visualization, pages 125-132. IEEE Computer Society.
  20. Lanzenberger, M., Miksch, S., and Pohl, M. (2005). Exploring highly structured data: a comparative study of stardinates and parallel coordinates. In International Conference on Information Visualization (IV), pages 312-320. IEEE Computer Society.
  21. Li, J., Martens, J.-B., and van Wijk, J. J. (2010). Judging correlation from scatterplots and parallel coordinate plots. Information Visualization, 9(1):13-30.
  22. McDonnell, K. T. and Mueller, K. (2008). Illustrative parallel coordinates. Computer Graphics Forum, 27(3):1031-1038.
  23. Miller, J. J. and Wegman, E. J. (1991). Construction of line densities for parallel coordinate plots. In Buja, A. and Tukey, P., editors, Computing and Graphics in Statistics, pages 107-123. Springer, New York.
  24. Moustafa, R. and Wegman, E. (2006). Multivariate continuous data - parallel coordinates. In Unwin, A., Theus, M., and Hofmann, H., editors, Graphics of Large Datasets: Visualizing a Million, pages 143- 156. Springer, New York.
  25. Novotny, M. and Hauser, H. (2006). Outlier-preserving focus+context visualization in parallel coordinates. IEEE Transactions on Visualization and Computer Graphics, 12(5):893-900.
  26. Ramos, E. and Donoho, D. (1983). 1983 ASA data exposition dataset. In CMU Dataset Archive. CMU.
  27. Rodrigues, Jr., J. F., Traina, A. J. M., and Traina, Jr., C. (2003). Frequency plot and relevance plot to enhance visual data exploration. In Symposium on Computer Graphics and Image Processing (SIBGRAPI), pages 117-124. IEEE Computer Society.
  28. Theisel, H. (2000). Higher order parallel coordinates. In Workshop on Vision, Modeling, and Visualization, pages 415-420.
  29. Wegman, E. (1990). Hyperdimensional data analysis using parallel coordinates. Journal of the American Statistical Association, 411(85):664.
  30. Wegman, E. J. and Luo, Q. (1997). High dimensional clustering using parallel coordinates and the grand tour. In Classification and Knowledge Organization, pages 93-102.
  31. Yuan, X., Guo, P., Xiao, H., Zhou, H., and Qu, H. (2009). Scattering points in parallel coordinates. IEEE Transactions on Visualization and Computer Graphics, 15(6):1001-1008.
  32. Zhou, H., Cui, W., Qu, H., Wu, Y., Yuan, X., and Zhuo, W. (2009). Splatting the lines in parallel coordinates. Computer Graphics Forum, 28(3):759-766.
  33. Zhou, H., Yuan, X., Qu, H., Cui, W., and Chen, B. (2008). Visual clustering in parallel coordinates. Computer Graphics Forum, 27(3):1047-1054.
Download


Paper Citation


in Harvard Style

Heinrich J., Luo Y., E. Kirkpatrick A. and Weiskopf D. (2012). EVALUATION OF A BUNDLING TECHNIQUE FOR PARALLEL COORDINATES . In Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2012) ISBN 978-989-8565-02-0, pages 594-602. DOI: 10.5220/0003821205940602


in Bibtex Style

@conference{ivapp12,
author={Julian Heinrich and Yuan Luo and Arthur E. Kirkpatrick and Daniel Weiskopf},
title={EVALUATION OF A BUNDLING TECHNIQUE FOR PARALLEL COORDINATES},
booktitle={Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2012)},
year={2012},
pages={594-602},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003821205940602},
isbn={978-989-8565-02-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2012)
TI - EVALUATION OF A BUNDLING TECHNIQUE FOR PARALLEL COORDINATES
SN - 978-989-8565-02-0
AU - Heinrich J.
AU - Luo Y.
AU - E. Kirkpatrick A.
AU - Weiskopf D.
PY - 2012
SP - 594
EP - 602
DO - 10.5220/0003821205940602