Eduardo Fernández, Pablo Ezzatti, Sergio Nesmachnow, Gonzalo Besuievsky


Radiosity methods are part of the global illumination techniques, which deal with the problem of generating photorealistic images in 3D scenes with Lambertian surfaces. Low-rank radiosity is a O(nk) method, where n is the number of polygons and k is the rank of the matrix used as a direct transport operator. This method allows calculating, in real-time and with infinite bounces, the illumination of a scene with static geometry and dynamic lighting. In this paper we present a new methodology for low-rank radiosity calculation based on the use of sparse matrices, which significantly reduces the memory storage required and achieves speedup improvements over the original low-rank method. Experimental analysis was performed in both traditional computers and new graphics processing unit architectures.


  1. Barrachina, S., Castillo, M., Igual, F., Mayo, R., and Quintana-Orti, E. (2008). Evaluation and tuning of level 3 CUBLAS for graphics processors. In Workshop on Parallel and Distributed Scientific and Engineering Computing, pages 1-8, Miami, EE.UU.
  2. Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., and der Vorst, H. V. (1994). Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition. SIAM, Philadelphia, PA.
  3. Cohen, M., Greenberg, D., Immel, D., and Brock, P. (1986). An efficient radiosity approach for realistic image synthesis. IEEE Comput. Graph. Appl., 6:26-35.
  4. Cohen, M., Wallace, J., and Hanrahan, P. (1993). Radiosity and realistic image synthesis. Academic Press Professional, Inc., San Diego, CA, USA.
  5. Cohen, M. F., Chen, S. E., Wallace, J. R., and Greenberg, D. P. (1988). A progressive refinement approach to fast radiosity image generation. SIGGRAPH Comput. Graph., 22:75-84.
  6. Dutre, P., Bala, K., Bekaert, P., and Shirley, P. (2006). Advanced Global Illumination. A. K. Peters, Ltd.
  7. Fasshauer, G. E. (2006). Meshfree methods. In Handbook of Theoretical and Computational Nanotechnology. American Scientific Publishers, pages 33-97.
  8. Fernández, E. (2009). Low-rank radiosity. In Proceedings IV Iberoamerican Symposium in Computer Graphics, pages 55-62, Isla Margarita, Venezuela.
  9. Golub, G. and Loan, C. V. (1996). Matrix Computations. The Johns Hopkins University Press.
  10. Goreinov, S., Tyrtyshnikov, E., and Zamarashkin, N. (1997). A theory of pseudoskeleton approximations. Linear Algebra and its Applications, 261:1-21.
  11. Gortler, S. J., Schröder, P., Cohen, M. F., and Hanrahan, P. (1993). Wavelet radiosity. In Proceedings of the 20th annual conference on Computer graphics and interactive techniques, SIGGRAPH 7893, pages 221-230, New York, NY, USA. ACM.
  12. Hanrahan, P., Salzman, D., and Aupperle, L. (1991). A rapid hierarchical radiosity algorithm. SIGGRAPH Comput. Graph., 25:197-206.
  13. Keller, A. (1997). Instant radiosity. In Proceedings of the 24th annual conference on computer graphics and interactive techniques, pages 49-56, New York, NY, USA. ACM Press/Addison-Wesley Publishing Co.
  14. Kontkanen, J., Turquin, E., Holzschuch, N., and Sillion, F. (2006). Wavelet radiance transport for interactive indirect lighting. In Heidrich, W. and Akenine-Möller, T., editors, Rendering Techniques 2006 (Eurographics Symposium on Rendering). Eurographics.
  15. Laine, S., Saransaari, H., Kontkanen, J., Lehtinen, J., and Aila, T. (2007). Incremental instant radiosity for realtime indirect illumination. In Proceedings of Eurographics Symposium on Rendering 2007, pages 277- 286. Eurographics Association.
  16. Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T. (1979). Basic Linear Algebra Subprograms for Fortran Usage. ACM Transactions on Mathematical Software, 5(3):308-323.
  17. Lehtinen, J., Zwicker, M., Turquin, E., Kontkanen, J., Durand, F., Sillion, F. X., and Aila, T. (2008). A meshless hierarchical representation for light transport. ACM Trans. Graph., 27:37:1-37:9.
  18. NVIDIA (2008). CUDA CUBLAS Library. NVIDIA Corporation, Santa Clara, California.
  19. Press, W., Teukolsky, S., Vetterling, W., and Flannery, B. (2007). Numerical Recipes: The Art of Scientific Computing. Cambridge University Press.
  20. Sloan, P., Kautz, J., and Snyder, J. (2002). Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. ACM Transactions on Graphics, 21:527-536.
  21. Sutherland, I., Sproull, R., and Schumacker, R. (1974). A characterization of ten hidden-surface algorithms. ACM Computing Surveys, 6:1-55.
  22. Wang, R., Wang, R., Zhou, K., Pan, M., and Bao, H. (2009). An efficient GPU-based approach for interactive global illumination. In SIGGRAPH International Conference and Exhibition on Computer Graphics and Interactive Techniques, pages 1-8, New York, NY, USA. ACM.

Paper Citation

in Harvard Style

Fernández E., Ezzatti P., Nesmachnow S. and Besuievsky G. (2012). LOW-RANK RADIOSITY USING SPARSE MATRICES . In Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2012) ISBN 978-989-8565-02-0, pages 260-267. DOI: 10.5220/0003829402600267

in Bibtex Style

author={Eduardo Fernández and Pablo Ezzatti and Sergio Nesmachnow and Gonzalo Besuievsky},
booktitle={Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2012)},

in EndNote Style

JO - Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2012)
SN - 978-989-8565-02-0
AU - Fernández E.
AU - Ezzatti P.
AU - Nesmachnow S.
AU - Besuievsky G.
PY - 2012
SP - 260
EP - 267
DO - 10.5220/0003829402600267