SIERPINSKI JELLY - Iterated Function Systems as Elastic Bodies

Pawel Filipczuk, Slawomir Nikiel, Korneliusz Warszawski

Abstract

Relatively simple ideas of fractal geometry result in an infinite number of complex images and objects. Fractals are used in computer graphics to increase visual fidelity of the vector models. Although derived from dynamical systems, fractals are usually presented as static objects. The paper presents a new concept of embedding physical description in the model of IFS (Iterated Function System). Dynamically changing fractal structures offer better sense of ‘material’ than static images or key-framed animations. The model can augment IFS attractors with the illusion of softness, weight and other material-related features. The proposed model is flexible, deterministic and offers high rendering performance.

References

  1. Barnsley, M. F., 2006. Superfractals, Cambridge University Press, N.Y.
  2. Barnsley, M. F., 1993. Fractals Everywhere, 2nd Edition, San Diego, CA, Academic Press.
  3. Barnsley, M. F., 1993. Fractal Image Compression, Wellesley, MA, Academic Press.
  4. Bell, S. B., 1995. Fractals: A Fast, Accurate and Illuminating Algorithm, Image and Vision Computing, 13(4), 253-277.
  5. Bell, S. B., and Holroyd, F. C., 1991. Tesseral Amalgamators and Hierarchical Tilings, Image and Vision Computing, 9(5), 313-328.
  6. Clempner, J. B., Poznyak A. S, 2011. Convergence method, properties and computational complexity for Lyapunov games, AMCS, Vol. 21
  7. Collet, P., and Lutton, E. et al. 1999. Polar IFS and Individual Genetic Programming, Technical Report, INRIA Research Reports.
  8. Di Trapani, L. J., Inanc T., 2010. NTGsim: A graphical user interface and a 3D simulator for nonlinear trajectory generation methodology, AMCS, Vol. 20
  9. Dubuc, S., 1990. Approximations of Fractal Sets, J. Computational and Applied Math., 29, 78-89.
  10. Falconer, K., 1990. Fractal Geometry, Mathematical Foundations and Applications, New York, John Wiley&Sons.
  11. Glassner, A. S., 1989. An Introduction to Ray Tracing, San Diego, CA, Academic Press.
  12. Glassner, A. S. 1992. Geometric Substitution: A Tutorial, IEEE Computer Graphics and Applications, 12(1), 22- 36.
  13. Hearn, D. and Baker, P., 1997. Computer Graphics CVersion, Upper Saddle River, New Jersey, Prentice Hall.
  14. Heckbert, P., 1994. Graphics Gems IV, London, Academic Press.
  15. Mignonneau, L., and Sommerer, Ch., 2000. Modeling Emergence of Complexity: The Application of Complex System and Origin of Life Theory to Interactive Art on the Internet, Artificial Life, Proc. of the 7th Int. Conf. on Artificial Life, Cambridge, MA, MIT Press, 547-554.
  16. Monro, D. M., and Dudbridge, F., 1995. Rendering Algorithms for Deterministic Fractals, IEEE Computer Graphics and Applications, January 1995, 272(17), 32-41.
  17. Nikiel, S., A Proposition of Mobile Fractal Image Decompression, AMCS, Vol. 17, No. 1, 129-136.
  18. Nikiel, S., 2005. Integration of Iterated Function Systems and Vector Graphics for Aesthetics, to be published in Computers&Graphics, 30(2).
  19. Nikiel, S., 1998. True-color Images and Iterated Function Systems, Computers&Graphics, 22(5), 635-640.
  20. Prusinkiewicz, P. and Lindemeyer, A., 1990. The Algorithmic Beauty of Plants, New York, Springer Verlag.
  21. Sims, K., 1991. Artificial Evolution for Computer Graphics, Computer Graphics, 25(4), 319-328.
  22. Skarbek, W.: On Convergance of Affine Fractal Operators, Image Processing and Communications, Vol. 1, No. 2, 33-41
Download


Paper Citation


in Harvard Style

Filipczuk P., Nikiel S. and Warszawski K. (2012). SIERPINSKI JELLY - Iterated Function Systems as Elastic Bodies . In Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2012) ISBN 978-989-8565-02-0, pages 361-364. DOI: 10.5220/0003829803610364


in Bibtex Style

@conference{grapp12,
author={Pawel Filipczuk and Slawomir Nikiel and Korneliusz Warszawski},
title={SIERPINSKI JELLY - Iterated Function Systems as Elastic Bodies},
booktitle={Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2012)},
year={2012},
pages={361-364},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003829803610364},
isbn={978-989-8565-02-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2012)
TI - SIERPINSKI JELLY - Iterated Function Systems as Elastic Bodies
SN - 978-989-8565-02-0
AU - Filipczuk P.
AU - Nikiel S.
AU - Warszawski K.
PY - 2012
SP - 361
EP - 364
DO - 10.5220/0003829803610364